Connect with us

AI 101

What are Support Vector Machines?

mm

Published

 on

Support vector machines are a type of machine learning classifier, arguably one of the most popular kinds of classifiers. Support vector machines are especially useful for numerical prediction, classification, and pattern recognition tasks.

Support vector machines operate by drawing decision boundaries between data points, aiming for the decision boundary that best separates the data points into classes (or is the most generalizable). The goal when using a support vector machine is that the decision boundary between the points is as large as possible so that the distance between any given data point and the boundary line is maximized. That’s a quick explanation of how support vector machines (SVMs) operate, but let’s take some time to delve deeper into how SVMs operate and understand the logic behind their operation.

The Goal Of Support Vector Machines

Imagine a graph with a number of data points on it, based on features specified by the X and Y axes. The data points on the graph can loosely be divided up into two different clusters, and the cluster that a data point belongs to indicates the class of the data point. Now assume that we want to draw a line down the graph that separates the two classes from each other, with all the data points in one class found on one side of the line and all the data points belonging to another class found on the other side of the line. This separating line is known as a hyperplane.

You can think of a support vector machine as creating “roads” throughout a city, separating the city into districts on either side of the road. All the buildings (data points) that are found on one side of the road belong to one district.

The goal of a support vector machine is not only to draw hyperplanes and divide data points, but to draw the hyperplane the separates data points with the largest margin, or with the most space between the dividing line and any given data point. Returning to the “roads” metaphor, if a city planner draws plans for a freeway, they don’t want the freeway to be too close to houses or other buildings. The more margin between the freeway and the buildings on either side, the better. The larger this margin, the more “confident” the classifier can be about its predictions. In the case of binary classification, drawing the correct hyperplane means choosing a hyperplane that is just in the middle of the two different classes. If the decision boundary/hyperplane is farther from one class, it will be closer to another. Therefore, the hyperplane must balance the margin between the two different classes.

Calculating The Separating Hyperplane From Support Vectors

So how does a support vector machine determine the best separating hyperplane/decision boundary? This is accomplished by calculating possible hyperplanes using a mathematical formula. We won’t cover the formula for calculating hyperplanes in extreme detail, but the line is calculated with the famous slope/line formula:

Y = ax + b

Meanwhile, lines are made out of points, which means any hyperplane can be described as: the set of points that run parallel to the proposed hyperplane, as determined by the weights of the model times the set of features modified by a specified offset/bias (“d”).

SVMs draw many hyperplanes. For example, the boundary line is one hyperplane, but the datapoints that the classifier considers are also on hyperplanes. The values for x are determined based on the features in the dataset. For instance, if you had a dataset with the heights and weights of many people, the “height” and “weight” features would be the features used to calculate the “X”. The margins between the proposed hyperplane and the various “support vectors” (datapoints) found on either side of the dividing hyperplane are calculated with the following formula:

W * X – b

While you can read more about the math behind SVMs, if you are looking for a more intuitive understanding of them just know that the goal is to maximize the distance between the proposed separating hyperplane/boundary line and the other hyperplanes that run parallel to it (and on which the data points are found).

Photo: ZackWeinberg via Wikimedia Commons, CC BY SA 3.0 (https://commons.wikimedia.org/wiki/File:Svm_separating_hyperplanes_(SVG).svg)

Multiclass Classification

The process described so far applies to binary classification tasks. However, SVM classifiers can also be used for non-binary classification tasks. When doing SVM classification on a dataset with three or more classes, more boundary lines are used. For example, if a classification task has three classes instead of two, two dividing lines will be used to divide up data points into classes and the region that comprises a single class will fall in between two dividing lines instead of one. Instead of just calculating the distance between just two classes and a decision boundary, the classifier must consider now the margins between the decision boundaries and the multiple classes within the dataset.

Non-Linear Separations

The process described above applies to cases where the data is linearly separable. Note that, in reality, datasets are almost never completely linearly separable, which means that when using an SVM classifier you will often need to use two different techniques: soft margin and kernel tricks. Consider a situation where data points of different classes are mixed together, with some instances belonging to one class in the “cluster” of another class. How could you have the classifier handle these instances?

One tactic that can be used to handle non-linearly separable datasets is the application of a “soft margin” SVM classifier. A soft margin classifier operates by accepting a few misclassified data points. It will try to draw a line that best separates the clusters of data points from each other, as they contain the majority of the instances belonging to their respective classes. The soft margin SVM classifier attempts to create a dividing line that balances the two demands of the classifier: accuracy and margin. It will try to minimize the misclassification while also maximizing the margin.

The SVM’s tolerance for error can be adjusted through manipulation of a hyperparameter called “C”. The C value controls how many support vectors the classifier considers when drawing decision boundaries. The C value is a penalty applied to misclassifications, meaning that the larger the C value the fewer support vectors the classifier takes into account and the narrower the margin.

The kernel tricks data the data and transforms it in a nonlinear fashion. Photo: Shiyu Ju via Wikmedia Commons, CC BY SA 4.0 (https://commons.wikimedia.org/wiki/File:Kernel_trick_idea.svg)

The Kernel Trick operates by applying nonlinear transformations to the features in the dataset. The Kernel Trick takes the existing features in the dataset and creates new features through the application of nonlinear mathematical functions. What results from the application of these nonlinear transformations is a nonlinear decision boundary. Because the SVM classifier is no longer restricted to drawing linear decision boundaries it can start drawing curved decision boundaries that better encapsulate the true distribution of the support vectors and bring misclassifications to a minimum. Two of the most popular SVM nonlinear kernels are Radial Basis Function and Polynomial. The polynomial function creates polynomial combinations of all the existing features, while the Radial Basis Function generates new features by measuring the distance between a central point/points to all the other points.

Spread the love

Blogger and programmer with specialties in Machine Learning and Deep Learning topics. Daniel hopes to help others use the power of AI for social good.

AI 101

What Are Nanobots? Understanding Nanobot Structure, Operation, and Uses

mm

Published

on

As technology advances, things don’t always become bigger and better, objects also become smaller. In fact, nanotechnology is one of the fastest-growing technological fields, worth over 1 trillion USD, and it’s forecast to grow by approximately 17% over the next half-decade. Nanobots are a major part of the nanotechnology field, but what are they exactly and how do they operate? Let’s take a closer look at nanobots to understand how this transformative technology works and what it’s used for.

What Are Nanobots?

The field of nanotechnology is concerned with the research and development of technology approximately one to 100 nanometres in scale. Therefore, nanorobotics is focused on the creation of robots that are around this size. In practice, it’s difficult to engineer anything as small as one nanometer in scale and the term “nanorobotics” and “nanobot” is frequently applied to devices which are approximately 0.1 – 10 micrometers in size, which is still quite small.

It’s important to note that the term “nanorobot” is sometimes applied to devices which interact with objects at the nanoscale, manipulating nanoscale items. Therefore, even if the device itself is much larger, it may be considered a nanorobotic instrument. This article will focus on nanoscale robots themselves.

Much of the field of nanorobotics and nanobots is still in the theoretical phase, with research focused on solving the problems of construction at such a small scale. However, some prototype nanomachines and nanomotors have been designed and tested.

Most currently existing nanorobotic devices fall into one of four categories: switches, motors, shuttles, and cars.

Nanorobotic switches operate by being prompted to switch from an “off” state to an “on” state. Environmental factors are used to make the machine change shape, a process called conformational change. The environment is altered using processes like chemical reactions, UV light, and temperature, and the nanorobotic switches shift into different forms as a result, able to accomplish specific tasks.

Nanomotors are more complex than simple switches, and they utilize the energy created by the effects of the conformational change in order to move around and affect the molecules in the surrounding environment.

Shuttles are nanorobots that are capable of transporting chemicals like drugs to specific, targeted regions. The goal is to combine shuttles with nanorobot motors so that the shuttles are capable of a greater degree of movement through an environment.

Nanorobotic “cars” are the most advanced nanodevices at the moment, capable of moving independently with prompts from chemical or electromagnetic catalysts. The nanomotors that drive nanorobotic cars need to be controlled in order for the vehicle to be steered, and researchers are experimenting with various methods of nanorobotic control.

Nanorobotics researchers aim to synthesize these different components and technologies into nanomachines that can complete complex tasks, accomplished by swarms of nanobots working together.

Photo: Photo: ” Comparison of the sizes of nanomaterials with those of other common materials.” Sureshup vai Wikimedia Commons, CC BY 3.0 (https://en.wikipedia.org/wiki/File:Comparison_of_nanomaterials_sizes.jpg)

How Are Nanobots Created?

The field of nanorobotics is at the crossroads of many disciplines and the creation of nanobots involves the creation of sensors, actuators and motors. Physical modeling must be done as well, and all of this must be done at nanoscale. As mentioned above, nanomanipulation devices are used to assemble these nano-scale parts and manipulate artificial or biological components, which includes the manipulation of cells and molecules.

Nanorobotics engineers must be able to solve a multitude of problems. They have to address issues regarding sensation, control power, communications, and interactions between both inorganic and organic materials.

The size of a nanobot is roughly comparable to biological cells, and because of this fact future nanobots could be employed in disciplines like medicine and environmental preservation/remediation. Most “nanobots” that exist today are just specific molecules which have been manipulated to accomplish certain tasks. 

Complex nanobots are essentially just simple molecules joined together and manipulated with chemical processes. For instance, some nanobots are comprised of DNA, and they transport molecular cargo.

How Do Nanobots Operate?

Given the still heavily theoretical nature of nanobots, questions about how nanobots operate are answered with predictions rather than statements of fact. It’s likely that the first major uses for nanobots will be in the medical field, moving through the human body and accomplishing tasks like diagnosing diseases, monitoring vitals, and dispensing treatments. These nanobots will need to be able to navigate their way around the human body and move through tissues like blood vessels.

Navigation

In terms of nanobot navigation, there are a variety of techniques that nanobot researchers and engineers are investigating. One method of navigation is the utilization of ultrasonic signals for detection and deployment. A nanobot could emit ultrasonic signals that could be traced to locate the position of the nanobots, and the robots could then be guided to specific areas with the use of a special tool that directs their motion. Magnetic Resonance Imaging (MRI) devices could also be employed to track the position of nanobots, and early experiments with MRIs have demonstrated that the technology can be used to detect and even maneuver nanobots. Other methods of detecting and maneuvring nanobots include the use of X-rays, microwaves and radio-waves. At the moment, our control of these waves at the nano-scale is fairly limited, so new methods of utilizing these waves would have to be invented.

The navigation and detection systems described above are external methods, relying on the use of tools to move the nanobots. With the addition of onboard sensors, the nanobots could be more autonomous. For instance, chemical sensors included onboard nanobots could allow the robot to scan the surrounding environment and follow certain chemical markers to a target region.

Power

When it comes to powering the nanobots, there are also a variety of power solutions being explored by researchers. Solutions for powering nanobots include external power sources and onboard/internal power sources.

Internal power solutions include generators and capacitors. Generators onboard the nanobot could use the electrolytes found within the blood to produce energy, or nanobots could even be powered using the surrounding blood as a chemical catalyst that produces energy when combined with a chemical the nanobot carries with it. Capacitors operate similarly to batteries, storing electrical energy that could be used to propel the nanobot. Other options like tiny nuclear power sources have even been considered.

As far as external power sources go, incredibly small, thin wires could tether the nanobots to an outside power source. Such wires could be made out of miniature fiber optic cables, sending pulses of light down the wires and having the actual electricity be generated within the nanobot.

Other external power solutions include magnetic fields or ultrasonic signals. Nanobots could employ something called a piezoelectric membrane, which is capable of collecting ultrasonic waves and transforming them into electrical power. Magnetic fields can be used to catalyze electrical currents within a closed conducting loop contained onboard the nanobot. As a bonus, the magnetic field could also be used to control the direction of the nanobot.

Locomotion

Addressing the problem of nanobot locomotion requires some inventive solutions. Nanobots that aren’t tethered, or aren’t just free-floating in their environment, need to have some method of moving to their target locations. The propulsion system will need to be powerful and stable, able to propel the nanobot against currents in its surrounding environment, like the flow of the blood. Propulsion solutions under investigation are often inspired by the natural world, with researchers looking at how microscope organisms move through their environment. For instance, microorganisms often use long, whip-like tails called flagella to propel themselves, or they use a number of tiny, hair-like limbs dubbed cilia.

Researchers are also experimenting with giving robots small arm-like appendages that could allow the robot to swim, grip, and crawl. Currently, these appendages are controlled via magnetic fields outside the body, as the magnetic force prompts the robot’s arms to vibrate. An added benefit to this method of locomotion is that the energy for it comes from an outside source. This technology would need to be made even smaller to make it viable for true nanobots.

There are other, more inventive, propulsion strategies also under investigation. For instance, some researchers have proposed using capacitors to engineer an electromagnetic pump that would pull conductive fluids in and shoot it out like a jet, propelling the nanobot forward.

Regardless of the eventual application of nanobots, they must solve the problems described above, handling navigation, locomotion, and power.

What Are Nanobots Used For?

As mentioned, the first uses for nanobots will likely be in the medical field. Nanobots could be used to monitor for damage to the body, and potentially even facilitate the repair of this damage. Future nanobots could deliver medicine directly to the cells that need them. Currently, medicines are delivered orally or intravenously and they spread throughout the body instead of hitting just the target regions, causing side effects. Nanobots equipped with sensors could easily be used to monitor for changes in regions of cells, reporting changes at the first sign of damage or malfunction.

We are still a long way away from these hypothetical applications, but progress is being made all the time. As an example, in 2017 scientists created nanobots that targeted cancer cells and attacked them with a miniaturized drill, killing them. This year, a group of researchers from ITMO University designed a nanobot composed of DNA fragments, capable of destroying pathogenic RNA strands. DNA-based nanobots are also currently capable of transporting molecular cargo, The nanobot is made of three different DNA sections, maneuvering with a DNA “leg” and carrying specific molecules with the use of an “arm”.

Beyond medical applications, research is being done regarding the use of nanobots for the purposes of environmental cleanup and remediation. Nanobots could potentially be used to remove toxic heavy metals and plastics from bodies of water. The nanobots could carry compounds that render toxic substances inert when combined together, or they could be used to degrade plastic waste through similar processes. Research is also being done on the use of nanobots to facilitate the production of extremely small computer chips and processors, essentially using nanobots to produce microscale computer circuits.

Spread the love
Continue Reading

AI 101

What Are Deepfakes?

mm

Published

on

As deepfakes become easier to make and more prolific, more attention is paid to them. Deepfakes have become the focal point of discussions involving AI ethics, misinformation, openness of information and the internet, and regulation. It pays to be informed regarding deepfakes, and to have an intuitive understanding of what deepfakes are. This article will clarify the definition of a deepfake, examine their use cases, discuss how deepfakes can be detected, and examine the implications of deepfakes for society.

What Is A Deepfakes?

Before going on to discuss deepfakes further, it would be helpful to take some time and clarify what “deepfakes” actually are. There is a substantial amount of confusion regarding the term Deepfake, and often the term is misapplied to any falsified media, regardless of whether or not it is a genuine deepfake. In order to qualify as a Deepfake, the faked media in question must be generated with a machine-learning system, specifically a deep neural network.

The key ingredient of deepfakes is machine learning. Machine learning has made it possible for computers to automatically generate video and audio relatively quickly and easily. Deep neural networks are trained on footage of a real person in order for the network to learn how people look and move under the target environmental conditions. The trained network is then used on images of another individual and augmented with additional computer graphics techniques in order to combine the new person with the original footage. An encoder algorithm is used to determine the similarities between the original face and the target face. Once the common features of the faces have been isolated, a second AI algorithm called a decoder is used. The decoder examines the encoded (compressed) images and reconstructs them based off on the features in the original images. Two decoders are used, one on the original subject’s face and the second on the target person’s face. In order for the swap to be made, the decoder trained on images of person X is fed images of person Y. The result is that person Y’s face is reconstruction over Person X’s facial expressions and orientation.

Currently, it still takes a fair amount of time for a deepfake to be made. The creator of the fake has to spend a long time manually adjusting parameters of the model, as suboptimal parameters will lead to noticeable imperfections and image glitches that give away the fake’s true nature.

Although it’s frequently assumed that most deepfakes are made with a type of neural network called a generative adversarial network (GAN), many (perhaps most) deepfakes created these days do not rely on GANs. While GANs did play a prominent role in the creation of early deepfakes,  most deepfake videos are created through alternative methods, according to Siwei Lyu from SUNY Buffalo.

It takes a disproportionately large amount of training data in order to train a GAN, and GANs often take much longer to render an image compared to other image generation techniques. GANs are also better for generating static images than video, as GANs have difficulties maintaining consistencies from frame to frame. It’s much more common to use an encoder and multiple decoders to create deepfakes.

What Are Deepfakes Used For?

Many of the deepfakes found online are pornographic in nature. According to research done by Deeptrace, an AI firm, out of a sample of approximately 15,000 deepfake videos taken in September of 2019, approximately 95% of them were pornographic in nature. A troubling implication of this fact is that as the technology becomes easier to use, incidents of fake revenge porn could rise.

However, not all deep fakes are pornographic in nature. There are more legitimate uses for deepfake technology. Audio deepfake technology could help people broadcast their regular voices after they are damaged or lost due to illness or injury. Deepfakes can also be used for hiding the faces of people who are in sensitive, potentially dangerous situations, while still allowing their lips and expressions to be read. Deepfake technology can potentially be used to improve the dubbing on foreign-language films, aid in the repair of old and damaged media, and even create new styles of art.

Non-Video Deepfakes

While most people think of fake videos when they hear the term “deepfake”, fake videos are by no means the only kind of fake media produced with deepfake technology. Deepfake technology is used to create photo and audio fakes as well. As previously mentioned, GANs are frequently used to generate fake images. It’s thought that there have been many cases of fake LinkedIn and Facebook profiles that have profile images generated with deepfake algorithms.

It’s possible to create audio deepfakes as well. Deep neural networks are trained to produce voice clones/voice skins of different people, including celebrities and politicians. One famous example of an audio Deepfake is when the AI company Dessa made use of an AI model, supported by non-AI algorithms, to recreate the voice of the podcast host Joe Rogan.

How To Spot Deepfakes

As deepfakes become more and more sophisticated, distinguishing them from genuine media will become tougher and tougher. Currently, there are a few telltale signs people can look for to ascertain if a video is potentially a deepfake, like poor lip-syncing, unnatural movement, flickering around the edge of the face, and warping of fine details like hair, teeth, or reflections. Other potential signs of a deepfake include lower-quality parts of the same video, and irregular blinking of the eyes.

While these signs may help one spot a deepfake at the moment, as deepfake technology improves the only option for reliable deepfake detection might be other types of AI trained to distinguish fakes from real media.

Artificial intelligence companies, including many of the large tech companies, are researching methods of detecting deepfakes. Last December, a deepfake detection challenge was started, supported by three tech giants: Amazon, Facebook, and Microsoft. Research teams from around the world worked on methods of detecting deepfakes, competing to develop the best detection methods. Other groups of researchers, like a group of combined researchers from Google and Jigsaw, are working on a type of “face forensics” that can detect videos that have been altered, making their datasets open source and encouraging others to develop deepfake detection methods. The aforementioned Dessa has worked on refining deepfake detection techniques, trying to ensure that the detection models work on deepfake videos found in the wild (out on the internet) rather than just on pre-composed training and testing datasets, like the open-source dataset Google provided.

There are also other strategies that are being investigated to deal with the proliferation of deepfakes. For instance, checking videos for concordance with other sources of information is one strategy. Searches can be done for video of events potentially taken from other angles, or background details of the video (like weather patterns and locations) can be checked for incongruities. Beyond this, a Blockchain online ledger system could register videos when they are initially created, holding their original audio and images so that derivative videos can always be checked for manipulation.

Ultimately, it’s important that reliable methods of detecting deepfakes are created and that these detection methods keep up with the newest advances in deepfake technology. While it is hard to know exactly what the effects of deepfakes will be, if there are not reliable methods of detecting deepfakes (and other forms of fake media), misinformation could potentially run rampant and degrade people’s trust in society and institutions.

Implications of Deepfakes

What are the dangers of allowing deep fake to proliferate unchecked?

One of the biggest problems that deepfakes create currently is nonconsensual pornography, engineered by combining people’s faces with pornographic videos and images. AI ethicists are worried that deepfakes will see more use in the creation of fake revenge porn. Beyond this, deepfakes could be used to bully and damage the reputation of just about anyone, as they could be used to place people into controversial and compromising scenarios.

Companies and cybersecurity specialists have expressed concern about the use of deepfakes to facilitate scams, fraud, and extortion. Allegedly, deepfake audio has been used to convince employees of a company to transfer money to scammers

It’s possible that deepfakes could have harmful effects even beyond those listed above. Deepfakes could potentially erode people’s trust in media generally, and make it difficult for people to distinguish between real news and fake news. If many videos on the web are fake, it becomes easier for governments, companies, and other entities to cast doubt on legitimate controversies and unethical practices.

When it comes to governments, deepfakes may even pose threats to the operation of democracy. Democracy requires that citizens are able to make informed decisions about politicians based on reliable information. Misinformation undermines democratic processes. For example, the president of Gabon, Ali Bongo, appeared in a video attempting to reassure the Gabon citizenry. The president was assumed to be unwell for long a long period of time, and his sudden appearance in a likely fake video kicked off an attempted coup. President Donald Trump claimed that an audio recording of him bragging about grabbing women by the genitals was fake, despite also describing it as “locker room talk”. Prince Andrew also claimed that an image provided by Emily Maitilis’ attorney was fake, though the attorney insisted on its authenticity.

Ultimately, while there are legitimate uses for deepfake technology, there are many potential harms that can arise from the misuse of that technology. For that reason, it’s extremely important that methods to determine the authenticity of media be created and maintained.

Spread the love
Continue Reading

AI 101

What is Federated Learning?

mm

Published

on

The traditional method of training AI models involves setting up servers where models are trained on data, often through the use of a cloud-based computing platform. However, over the past few years an alternative form of model creation has arisen, called federated learning. Federated learning brings machine learning models to the data source, rather than bringing the data to the model. Federated learning links together multiple computational devices into a decentralized system that allows the individual devices that collect data to assist in training the model.

In a federated learning system, the various devices that are part of the learning network each have a copy of the model on the device. The different devices/clients train their own copy of the model using the client’s local data, and then the parameters/weights from the individual models are sent to a master device, or server, that aggregates the parameters and updates the global model. This training process can then be repeated until a desired level of accuracy is attained. In short, the idea behind federated learning is that none of the training data is ever transmitted between devices or between parties, only the updates related to the model are.

Federated learning can be broken down into three different steps or phases. Federated learning typically starts with a generic model that acts as a baseline and is trained on a central server. In the first step, this generic model is sent out to the application’s clients. These local copies are then trained on data generated by the client systems, learning and improving their performance.

In the second step, the clients all send their learned model parameters to the central server. This happens periodically, on a set schedule.

In the third step, the server aggregates the learned parameters when it receives them. After the parameters are aggregated, the central model is updated and shared once more with the clients. The entire process then repeats.

The benefit of having a copy of the model on the various devices is that network latencies are reduced or eliminated. The costs associated with sharing data with the server is eliminated as well. Other benefits of federate learning methods include the fact that federated learning models are privacy preserved, and model responses are personalized for the user of the device.

Examples of federated learning models include recommendation engines, fraud detection models, and medical models. Media recommendation engines, of the type used by Netflix or Amazon, could be trained on data gathered from thousands of users. The client devices would train their own separate models and the central model would learn to make better predictions, even though the individual data points would be unique to the different users. Similarly, fraud detection models used by banks can be trained on patterns of activity from many different devices, and a handful of different banks could collaborate to train a common model. In terms of a medical federated learning model, multiple hospitals could team up to train a common model that could recognize potential tumors through medical scans.

Types of Federated Learning

Federated learning schemas typically fall into one of two different classes: multi-party systems and single-party systems. Single-party federated learning systems are called “single-party” because only a single entity is responsible for overseeing the capture and flow of data across all of the client devices in the learning network. The models that exist on the client devices are trained on data with the same structure, though the data points are typically unique to the various users and devices.

In contrast to single-party systems, multi-party systems are managed by two or more entities. These entities cooperate to train a shared model by utilizing the various devices and datasets they have access to. The parameters and data structures are typically similar across the devices belonging to the multiple entities, but they don’t have to be exactly the same. Instead, pre-processing is done to standardize the inputs of the model. A neutral entity might be employed to aggregate the weights established by the devices unique to the different entities.

Common Technologies and Frameworks for Federated Learning

Popular frameworks used for federated learning include Tensorflow Federated, Federated AI Technology Enabler (FATE), and PySyft. PySyft is an open-source federated learning library based on the deep learning library PyTorch. PySyft is intended to ensure private, secure deep learning across servers and agents using encrypted computation. Meanwhile, Tensorflow Federated is another open-source framework built on Google’s Tensorflow platform. In addition to enabling users to create their own algorithms, Tensorflow Federated allows users to simulate a number of included federated learning algorithms on their own models and data. Finally, FATE is also open-source framework designed by Webank AI, and it’s intended to provide the Federated AI ecosystem with a secure computing framework.

Federated Learning Challenges

As federated learning is still fairly nascent, a number of challenges still have to be negotiated in order for it to achieve its full potential. The training capabilities of edge devices, data labeling and standardization, and model convergence are potential roadblocks for federated learning approaches.

The computational abilities of the edge devices, when it comes to local training, need to be considered when designing federated learning approaches. While most smartphones, tablets, and other IoT compatible devices are capable of training machine learning models, this typically hampers the performance of the device. Compromises will have to be made between model accuracy and device performance.

Labeling and standardizing data is another challenge that federated learning systems must overcome. Supervised learning models require training data that is clearly and consistently labeled, which can be difficult to do across the many client devices that are part of the system. For this reason, it’s important to develop model data pipelines that automatically apply labels in a standardized way based on events and user actions.

Model convergence time is another challenge for federated learning, as federated learning models typically take longer to converge than locally trained models. The number of devices involved in the training adds an element of unpredictability to the model training, as connection issues, irregular updates, and even different application use times can contribute to increased convergence time and decreased reliability. For this reason, federated learning solutions are typically most useful when they provide meaningful advantages over centrally training a model, such as instances where datasets are extremely large and distributed.

Spread the love
Continue Reading