Connect with us

AI 101

Supervised vs Unsupervised Learning

mm

Published

 on

Supervised vs Unsupervised Learning

In machine learning, most tasks can be easily categorized into one of two different classes: supervised learning problems or unsupervised learning problems. In supervised learning, data has labels or classes appended to it, while in the case of unsupervised learning the data is unlabeled. Let’s take a close look at why this distinction is important and look at some of the algorithms associated with each type of learning.

Supervised Vs. Unsupervised Learning

Most machine learning tasks are in the domain of supervised learning. In supervised learning algorithms, the individual instances/data points in the dataset have a class or label assigned to them. This means that the machine learning model can learn to distinguish which features are correlated with a given class and that the machine learning engineer can check the model’s performance by seeing how many instances were properly classified. Classification algorithms can be used to discern many complex patterns, as long as the data is labeled with the proper classes. For instance, a machine-learning algorithm can learn to distinguish different animals from each other based off of characteristics like “whiskers”, “tail”, “claws”, etc.

In contrast to supervised learning, unsupervised learning involves creating a model that is able to extract patterns from unlabeled data. In other words, the computer analyzes the input features and determines for itself what the most important features and patterns are. Unsupervised learning tries to find the inherent similarities between different instances. If a supervised learning algorithm aims to place data points into known classes, unsupervised learning algorithms will examine the features common to the object instances and place them into groups based on these features, essentially creating its own classes.

Examples of supervised learning algorithms are Linear Regression, Logistic Regression, K-nearest Neighbors, Decision Trees, and Support Vector Machines.

Meanwhile, some examples of unsupervised learning algorithms are Principal Component Analysis and K-Means Clustering.

Supervised Learning Algorithm Examples

Linear Regression is an algorithm that takes two features and plots out the relationship between them. Linear Regression is used to predict numerical values in relation to other numerical variables. Linear Regression has the equation of Y = a +bX, where b is the line’s slope and a is where y crosses the X-axis.

Logistic Regression is a binary classification algorithm. The algorithm examines the relationship between numerical features and finds the probability that the instance can be classified into one of two different classes. The probability values are “squeezed” towards either 0 or 1. In other words, strong probabilities will approach 0.99 while weak probabilities will approach 0.

K-Nearest Neighbors assigns a class to new data points based on the assigned classes of some chosen amount of neighbors in the training set. The number of neighbors considered by the algorithm is important, and too few or too many neighbors can misclassify points.

Decision Trees are a type of classification and regression algorithm. A decision tree operates by splitting up a dataset down into smaller and smaller portions until the subsets can’t be split any further and what results is a tree with nodes and leaves. The nodes are where decisions about data points are made using different filtering criteria, while the leaves are the instances that have been assigned some label (a data point that has been classified). Decision tree algorithms are capable of handling both numerical and categorical data. Splits are made in the tree on specific variables/features.

Support Vector Machines are a classification algorithm that operates by drawing hyperplanes, or lines of separation, between data points. Data points are separated into classes based upon which side of the hyperplane they are on. Multiple hyperplanes can be drawn across a plane, diving a dataset into multiple classes. The classifier will try to maximize the distance between the diving hyperplane and the points on either side of the plane, and the greater the distance between the line and the points, the more confident the classifier is.

Unsupervised Learning Algorithms

Principal Component Analysis is a technique used for dimensionality reduction, meaning that the dimensionality or complexity of the data is represented in a simpler fashion. The Principal Component Analysis algorithm finds new dimensions for the data that are orthogonal. While the dimensionality of the data is reduced, the variance between the data should be preserved as much as possible. What this means in practical terms is that it takes the features in the dataset and distills them down into fewer features that represent most of the data.

K-Means Clustering is an algorithm that automatically groups data points into clusters based on similar features. The patterns within the dataset are analyzed and the datapoints split into groups based on these patterns. Essentially, K-means creates its own classes out of unlabeled data. The K-Means algorithm operates by assigning centers to the clusters, or centroids, and moving the centroids until the optimal position for the centroids is found. The optimal position will be one where the distance between the centroids to the surrounding data points within the class is minimized. The “K” in K-means clustering refers to how many centroids have been chosen.

Summing Up

To close, let’s quickly go over the key differences between supervised and unsupervised learning.

As we previously discussed, in supervised learning tasks the input data is labeled and the number of classes are known. Meanwhile, input data is unlabeled and the number of classes not known in unsupervised learning cases. Unsupervised learning tends to be less computationally complex, whereas supervised learning tends to be more computationally complex. While supervised learning results tend to be highly accurate, unsupervised learning results tend to be less accurate/moderately accurate.

To Learn More

Recommended Machine Learning CoursesOffered ByDurationDifficulty


Introduction to Artificial Intelligence



IBM

9 Hours

Beginner


Deep Learning for Business


Yonsei University

8 Hours

Beginner


An Introduction to Practical Deep Learning


Intel Software

12 Hours

Intermediate


Machine Learning Foundations


University of Washingotn

24 Hours

Intermediate
Spread the love

AI 101

AI Model Used To Map Dryness Of Forests, Predict Wildfires

mm

Published

on

AI Model Used To Map Dryness Of Forests, Predict Wildfires

A new deep learning model designed by researchers from Stanford University leverages moisture levels across 12 different states in order to assist in the prediction of wildfires and help fire management teams get ahead of potentially destructive wildfires.

Fire management teams aim to predict where the worst blazes might occur, in order that preventative measures like prescribed burns can be carried out. Predicting points of origin and spreading patterns for wildfires mandates information regarding fuel amounts and moisture levels for the target region. Collecting this data and analyzing it at the speed required to be useful to wildfire management teams is difficult, but deep learning models could help automate these critical processes.

As Futurity recently reported, researchers from Stanford University collected climate data and designed a model intended to render detailed maps of moisture levels across 12 western states, including the Pacific Coast states, Texas, Wyoming, Montana, and the southwest states. According to the researchers, although the model is still undergoing refinement it is already capable of revealing areas at high-risk for forest fires where the landscape is unusually dry.

The typical method of collecting data regarding fuel and moisture levels for a target region is by painstakingly comparing dried out vegetation to more moist vegetation. Specifically, researchers collect vegetation samples from trees and weigh them. Afterwards, the vegetation samples are dried out and reweighted. Comparisons are made between the weight of the dry samples and the wet samples to determine the amount of moisture in the vegetation. This process is a long, complex one that is only viable in certain areas and for some species of vegetation. However, the data collected from decades of this process has been used to create the National Fuel Moisture Database, comprised of over 200,000 records. The fuel-moisture content of a region is well known to be linked to the risk of wildfire, though it’s still unknown just how much of a role it plays between ecosystems and from one plant to other plants.

Krishna Rao, PhD student in earth systems science at Stanford was the lead author or the new study, and Rao explained to Futurity that machine learning affords researchers the ability to test assumptions about links between live fuel moisture and weather for different ecosystems. Rao and colleagues trained a recurrent neural network model on data from the National Fuel Moisture Database. The model was then tested by estimating fuel moisture levels based on measurements collected by space sensors. The data included signals from synthetic aperture radar (SAR), which is microwave radar signals that penetrate to the surface, and visible light bouncing off the planet’s surface. The training and validation data for the model consisted of  three years of data for approximately 240 sites across the western US starting in 2015.

The researchers ran analyses on various types of land coverage, including sparse vegetation, grasslands, shrublands, needleleaf evergreen forests, and broadleaf deciduous forests. The model’s predictions were the most accurate, most reliably matched the NFMD measurement, on shrubland regions. This is fortunate, as shrublands comprise approximately 45% of the ecosystems found throughout the US west. Shrublands, particularly chaparral shrublands, are often uniquely susceptible to fire, as seen in many of the fires that burned throughout California over recent years.

The predictions generated by the model have been used to create an interactive map that fire management agencies could one day use to prioritize regions for fire control and discern other relevant patterns. The researchers believe that with further training and refinement the model could.

As Alexandra Konings, assistant professor of earth systems science at Stanford, explained to Futurity:

“Creating these maps was the first step in understanding how this new fuel moisture data might affect fire risk and predictions. Now we’re trying to really pin down the best ways to use it for improved fire prediction.”

Spread the love
Continue Reading

AI 101

What is Federated Learning?

mm

Published

on

What is Federated Learning?

The traditional method of training AI models involves setting up servers where models are trained on data, often through the use of a cloud-based computing platform. However, over the past few years an alternative form of model creation has arisen, called federated learning. Federated learning brings machine learning models to the data source, rather than bringing the data to the model. Federated learning links together multiple computational devices into a decentralized system that allows the individual devices that collect data to assist in training the model.

In a federated learning system, the various devices that are part of the learning network each have a copy of the model on the device. The different devices/clients train their own copy of the model using the client’s local data, and then the parameters/weights from the individual models are sent to a master device, or server, that aggregates the parameters and updates the global model. This training process can then be repeated until a desired level of accuracy is attained. In short, the idea behind federated learning is that none of the training data is ever transmitted between devices or between parties, only the updates related to the model are.

Federated learning can be broken down into three different steps or phases. Federated learning typically starts with a generic model that acts as a baseline and is trained on a central server. In the first step, this generic model is sent out to the application’s clients. These local copies are then trained on data generated by the client systems, learning and improving their performance.

In the second step, the clients all send their learned model parameters to the central server. This happens periodically, on a set schedule.

In the third step, the server aggregates the learned parameters when it receives them. After the parameters are aggregated, the central model is updated and shared once more with the clients. The entire process then repeats.

The benefit of having a copy of the model on the various devices is that network latencies are reduced or eliminated. The costs associated with sharing data with the server is eliminated as well. Other benefits of federate learning methods include the fact that federated learning models are privacy preserved, and model responses are personalized for the user of the device.

Examples of federated learning models include recommendation engines, fraud detection models, and medical models. Media recommendation engines, of the type used by Netflix or Amazon, could be trained on data gathered from thousands of users. The client devices would train their own separate models and the central model would learn to make better predictions, even though the individual data points would be unique to the different users. Similarly, fraud detection models used by banks can be trained on patterns of activity from many different devices, and a handful of different banks could collaborate to train a common model. In terms of a medical federated learning model, multiple hospitals could team up to train a common model that could recognize potential tumors through medical scans.

Types of Federated Learning

Federated learning schemas typically fall into one of two different classes: multi-party systems and single-party systems. Single-party federated learning systems are called “single-party” because only a single entity is responsible for overseeing the capture and flow of data across all of the client devices in the learning network. The models that exist on the client devices are trained on data with the same structure, though the data points are typically unique to the various users and devices.

In contrast to single-party systems, multi-party systems are managed by two or more entities. These entities cooperate to train a shared model by utilizing the various devices and datasets they have access to. The parameters and data structures are typically similar across the devices belonging to the multiple entities, but they don’t have to be exactly the same. Instead, pre-processing is done to standardize the inputs of the model. A neutral entity might be employed to aggregate the weights established by the devices unique to the different entities.

Common Technologies and Frameworks for Federated Learning

Popular frameworks used for federated learning include Tensorflow Federated, Federated AI Technology Enabler (FATE), and PySyft. PySyft is an open-source federated learning library based on the deep learning library PyTorch. PySyft is intended to ensure private, secure deep learning across servers and agents using encrypted computation. Meanwhile, Tensorflow Federated is another open-source framework built on Google’s Tensorflow platform. In addition to enabling users to create their own algorithms, Tensorflow Federated allows users to simulate a number of included federated learning algorithms on their own models and data. Finally, FATE is also open-source framework designed by Webank AI, and it’s intended to provide the Federated AI ecosystem with a secure computing framework.

Federated Learning Challenges

As federated learning is still fairly nascent, a number of challenges still have to be negotiated in order for it to achieve its full potential. The training capabilities of edge devices, data labeling and standardization, and model convergence are potential roadblocks for federated learning approaches.

The computational abilities of the edge devices, when it comes to local training, need to be considered when designing federated learning approaches. While most smartphones, tablets, and other IoT compatible devices are capable of training machine learning models, this typically hampers the performance of the device. Compromises will have to be made between model accuracy and device performance.

Labeling and standardizing data is another challenge that federated learning systems must overcome. Supervised learning models require training data that is clearly and consistently labeled, which can be difficult to do across the many client devices that are part of the system. For this reason, it’s important to develop model data pipelines that automatically apply labels in a standardized way based on events and user actions.

Model convergence time is another challenge for federated learning, as federated learning models typically take longer to converge than locally trained models. The number of devices involved in the training adds an element of unpredictability to the model training, as connection issues, irregular updates, and even different application use times can contribute to increased convergence time and decreased reliability. For this reason, federated learning solutions are typically most useful when they provide meaningful advantages over centrally training a model, such as instances where datasets are extremely large and distributed.

Spread the love
Continue Reading

AI 101

What is Deep Reinforcement Learning?

mm

Published

on

What is Deep Reinforcement Learning?

Along with unsupervised machine learning and supervised learning, another common form of AI creation is reinforcement learning. Beyond regular reinforcement learning, deep reinforcement learning can lead to astonishingly impressive results, thanks to the fact that it combines the best aspects of both deep learning and reinforcement learning. Let’s take a look at precisely how deep reinforcement learning operates. Note that this article won’t delve too deeply into the formulas used in deep reinforcement learning, rather it aims to give the reader a high level intution for how the process works.

Before we dive into deep reinforcement learning, it might be a good idea to refresh ourselves on how regular reinforcement learning works. In reinforcement learning, goal-oriented algorithms are designed through a process of trial and error, optimizing for the action that leads to the best result/the action that gains the most “reward”. When reinforcement learning algorithms are trained, they are given “rewards” or “punishments” that influence which actions they will take in the future. Algorithms try to find a set of actions that will provide the system with the most reward, balancing both immediate and future rewards.

Reinforcement learning algorithms are very powerful because they can be applied to almost any task, being able to flexibly and dynamically learn from an environment and discover possible actions.

Overview of Deep Reinforcement Learning

What is Deep Reinforcement Learning?

Photo: Megajuice via Wikimedia Commons, CC 1.0 (https://commons.wikimedia.org/wiki/File:Reinforcement_learning_diagram.svg)

When it comes to deep reinforcement learning, the environment is typically represented with images. An image is a capture of the environment at a particular point in time. The agent must analyze the images and extract relevant information from them, using the information to inform which action they should take. Deep reinforcement learning is typically carried out with one of two different techniques: value-based learning and policy-based learning.

Value-based learning techniques make use of algorithms and architectures like convolutional neural networks and Deep-Q-Networks. These algorithms operate by converting the image to greyscale and cropping out unnecessary parts of the image. Afterward, the image undergoes various convolutions and pooling operations, extracting the most relevant portions of the image. The important parts of the image are then used to calculate the Q-value for the different actions the agent can take. Q-values are used to determine the best course of action for the agent. After the initial Q-values are calculated, backpropagation is carried out in order that the most accurate Q-values can be determined.

Policy-based methods are used when the number of possible actions that the agent can take is extremely high, which is typically the case in real-world scenarios. Situations like these require a different approach because calculating the Q-values for all the individual actions isn’t pragmatic. Policy-based approaches operate without calculating function values for individual actions. Instead, they adopt policies by learning the policy directly, often through techniques called Policy Gradients.

Policy gradients operate by receiving a state and calculating probabilities for actions based on the agent’s prior experiences. The most probable action is then selected. This process is repeated until the end of the evaluation period and the rewards are given to the agent. After the rewards have been dealt with the agent, the network’s parameters are updated with backpropagation.

A Closer Look at Q-Learning

Because Q-Learning is such a large part of the deep reinforcement learning process, let’s take some time to really understand how the Q-learning system works.

The Markov Decision Process

What is Deep Reinforcement Learning?

A markov decision process. Photo: waldoalvarez via Pixabay, Pixbay License (https://commons.wikimedia.org/wiki/File:Markov_Decision_Process.svg)

In order for an AI agent to carry out a series of tasks and reach a goal, the agent must be able to deal with a sequence of states and events. The agent will begin at one state and it must take a series of actions to reach an end state, and there can be a massive number of states existing between the beginning and end states. Storing information regarding every state is impractical or impossible, so the system must find a way to preserve just the most relevant state information. This is accomplished through the use of a Markov Decision Process, which preserves just the information regarding the current state and the previous state.  Every state follows a Markov property, which tracks how the agent change from the previous state to the current state.

Deep Q-Learning

Once the model has access to information about the states of the learning environment, Q-values can be calculated. The Q-values are the total reward given to the agent at the end of a sequence of actions.

The Q-values are calculated with a series of rewards. There is an immediate reward, calculated at the current state and depending on the current action. The Q-value for the subsequent state is also calculated, along with the Q-value for the state after that, and so on until all the Q-values for the different states have been calculated. There is also a Gamma parameter that is used to control how much weight future rewards have on the agent’s actions. Policies are typically calculated by randomly initializing Q-values and letting the model converge toward the optimal Q-values over the course of training.

Deep Q-Networks

One of the fundamental problems involving the use of Q-learning for reinforcement learning is that the amount of memory required to store data rapidly expands as the number of states increases. Deep Q Networks solve this problem by combining neural network models with Q-values, enabling an agent to learn from experience and make reasonable guesses about the best actions to take. With deep Q-learning, the Q-value functions are estimated with neural networks. The neural network takes the state in as the input data, and the network outputs Q-value for all the different possible actions the agent might take.

Deep Q-learning is accomplished by storing all the past experiences in memory, calculating maximum outputs for the Q-network, and then using a loss function to calculate the difference between current values and the theoretical highest possible values.

Deep Reinforcement Learning vs Deep Learning

One important difference between deep reinforcement learning and regular deep learning is that in the case of the former the inputs are constantly changing, which isn’t the case in traditional deep learning. How can the learning model account for inputs and outputs that are constantly shifting?

Essentially, to account for the divergence between predicted values and target values, two neural networks can be used instead of one. One network estimates the target values, while the other network is responsible for the predictions. The parameters of the target network are updated as the model learns, after a chosen number of training iterations have passed. The outputs of the respective networks are then joined together to determine the difference.

Policy-Based Learning

Policy-based learning approaches operate differently than Q-value based approaches. While Q-value approaches create a value function that predicts rewards for states and actions, policy-based methods determine a policy that will map states to actions. In other words, the policy function that selects for actions is directly optimized without regard to the value function.

Policy Gradients

A policy for deep reinforcement learning falls into one of two categories: stochastic or deterministic. A deterministic policy is one where states are mapped to actions, meaning that when the policy is given information about a state an action is returned. Meanwhile, stochastic policies return a probability distribution for actions instead of a single, discrete action.

Deterministic policies are used when there is no uncertainty about the outcomes of the actions that can be taken. In other words, when the environment itself is deterministic. In contrast, stochastic policy outputs are appropriate for environments where the outcome of actions is uncertain. Typically, reinforcement learning scenarios involve some degree of uncertainty so stochastic policies are used.

Policy gradient approaches have a few advantages over Q-learning approaches, as well as some disadvantages. In terms of advantages, policy-based methods converge on optimal parameters quicker and more reliably. The policy gradient can just be followed until the best parameters are determined, whereas with value-based methods small changes in estimated action values can lead to large changes in actions and their associated parameters.

Policy gradients work better for high dimensional action spaces as well. When there is an extremely high number of possible actions to take, deep Q-learning becomes impractical because it must assign a score to every possible action for all time steps, which may be impossible computationally. However, with policy-based methods, the parameters are adjusted over time and the number of possible best parameters quickly shrinks as the model converges.

Policy gradients are also capable of implementing stochastic policies, unlike value-based policies. Because stochastic policies produce a probability distribution, an exploration/exploitation trade-off does not need to be implemented.

In terms of disadvantages, the main disadvantage of policy gradients is that they can get stuck while searching for optimal parameters, focusing only on a narrow, local set of optimum values instead of the global optimum values.

Policy Score Function

The policies used to optimize a model’s performance aim to maximize a score function – J(θ). If J(θ) is a measure of how good our policy is for achieving the desired goal, we can find the values of “θ” that gives us the best policy. First, we need to calculate an expected policy reward. We estimate the policy reward so we have an objective, something to optimize towards. The Policy Score Function is how we calculate the expected policy reward, and there are different Policy Score Functions that are commonly used, such as: start values for episodic environments, the average value for continuous environments, and the average reward per time step.

Policy Gradient Ascent

What is Deep Reinforcement Learning?

Gradient ascent aims to move the parameters until they are at the place where the score is highest. Photo: Public Domain (https://commons.wikimedia.org/wiki/File:Gradient_ascent_(surface).png)

After the desired Policy Score Function is used, and an expected policy reward calculated, we can find a value for the parameter “θ” which maximizes the score function. In order to maximize the score function J(θ), a technique called “gradient ascent” is used. Gradient ascent is similar in concept to gradient descent in deep learning, but we are optimizing for the steepest increase instead of decrease. This is because our score is not “error”, like in many deep learning problems. Our score is something we want to maximize. An expression called the Policy Gradient Theorem is used to estimate the gradient with respect to policy “θ”.

Summing Up

In summary, deep reinforcement learning combines aspects of reinforcement learning and deep neural networks. Deep reinforcement learning is done with two different techniques: Deep Q-learning and policy gradients.

Deep Q-learning methods aim to predict which rewards will follow certain actions taken in a given state, while policy gradient approaches aim to optimize the action space, predicting the actions themselves. Policy-based approaches to deep reinforcement learning are either deterministic or stochastic in nature. Deterministic policies map states directly to actions while stochastic policies produce probability distributions for actions.

Spread the love
Continue Reading