### AI 101

# What is Natural Language Processing?

Natural Language Processing (NLP) is the study and application of techniques and tools that enable computers to process, analyze, interpret, and reason about human language. NLP is an interdisciplinary field and it combines techniques established in fields like linguistics and computer science. These techniques are used in concert with AI to create chatbots and digital assistants like Google Assistant and Amazon’s Alexa.

Let’s take some time to explore the rationale behind Natural Language Processing, some of the techniques used in NLP, and some common uses cases for NLP.

## Why Is Natural Language Processing Important?

In order for computers to interpret human language, they must be converted into a form that a computer can manipulate. However, this isn’t as simple as converting text data into numbers. In order to derive meaning from human language, patterns have to be extracted from the hundreds or thousands of words that make up a text document. This is no easy task. There are few hard and fast rules that can be applied to the interpretation of human language. For instance, the exact same set of words can mean different things depending on the context. Human language is a complex and often ambiguous thing, and a statement can be uttered with sincerity or sarcasm.

Despite this, there are some general guidelines that can be used when interpreting words and characters, such as the character “s” being used to denote that an item is plural. These general guidelines have to be used in concert with each other to extract meaning from the text, to create features that a machine learning algorithm can interpret.

Natural Language Processing involves the application of various algorithms capable of taking unstructured data and converting it into structured data. If these algorithms are applied in the wrong manner, the computer will often fail to derive the correct meaning from the text. This can often be seen in the translation of text between languages, where the precise meaning of the sentence is often lost. While machine translation has improved substantially over the past few years, machine translation errors still occur frequently.

## Natural Language Processing Techniques

Many of the techniques that are used in natural language processing can be placed in one of two categories: syntax or semantics. Syntax techniques are those that deal with the ordering of words, while semantic techniques are the techniques that involve the meaning of words.

**Syntax NLP Techniques**

Examples of syntax include:

- Lemmatization
- Morphological Segmentation
- Part-of-Speech Tagging
- Parsing
- Sentence Breaking
- Stemming
- Word Segmentation

Lemmatization refers to distilling the different inflections of a word down to a single form. Lemmatization takes things like tenses and plurals and simplifies them, for example, “feet” might become “foot” and “stripes” may become “stripe”. This simplified word form makes it easier for an algorithm to interpret the words in a document.

Morphological segmentation is the process of dividing words into morphemes or the base units of a word. These units are things like free morphemes (which can stand alone as words) and prefixes or suffixes.

Part-of-speech tagging is simply the process of identifying which part of speech every word in an input document is.

Parsing refers to analyzing all the words in a sentence and correlating them with their formal grammar labels or doing grammatical analysis for all the words.

Sentence breaking, or sentence boundary segmentation, refers to deciding where a sentence begins and ends.

Stemming is the process of reducing words down to the root form of the word. For instance, connected, connection, and connections would all be stemmed to “connect”.

Word Segmentation is the process of dividing large pieces of text down into small units, which can be words or stemmed/lemmatized units.

**Semantic NLP Techniques**

Semantic NLP techniques include techniques like:

- Named Entity Recognition
- Natural Language Generation
- Word-Sense disambiguation

Named entity recognition involves tagging certain text portions that can be placed into one of a number of different preset groups. Pre-defined categories include things like dates, cities, places, companies, and individuals.

Natural language generation is the process of using databases to transform structured data into natural language. For instance, statistics about the weather, like temperature and wind speed could be summarized with natural language.

Word-sense disambiguation is the process of assigning meaning to words within a text based on the context the words appear in.

## Deep Learning Models For Natural Language Processing

Regular multilayer perceptrons are unable to handle the interpretation of sequential data, where the order of the information is important. In order to deal with the importance of order in sequential data, a type of neural network is used that preserves information from previous timesteps in the training.

Recurrent Neural Networks are types of neural networks that loop over data from previous timesteps, taking them into account when calculating the weights of the current timestep. Essentially, RNN’s have three parameters that are used during the forward training pass: a matrix based on the Previous Hidden State, a matrix based on the Current Input, and a matrix that is between the hidden state and the output. Because RNNs can take information from previous timesteps into account, they can extract relevant patterns from text data by taking earlier words in the sentence into account when interpreting the meaning of a word.

Another type of deep learning architecture used to process text data is a Long Short-Term Memory (LSTM) network. LSTM networks are similar to RNNs in structure, but owing to some differences in their architecture they tend to perform better than RNNs. They avoid a specific problem that often occurs when using RNNs called the exploding gradient problem.

These deep neural networks can be either unidirectional or bi-directional. Bi-directional networks are capable of taking not just the words that come prior to the current word into account, but the words that come after it. While this leads to higher accuracy, it is more computationally expensive.

## Use Cases For Natural Language Processing

Because Natural Language Processing involves the analysis and manipulation of human languages, it has an incredibly wide range of applications. Possible applications for NLP include chatbots, digital assistants, sentiment analysis, document organization, talent recruitment, and healthcare.

Chatbots and digital assistants like Amazon’s Alexa and Google Assistant are examples of voice recognition and synthesis platforms that use NLP to interpret and respond to vocal commands. These digital assistants help people with a wide variety of tasks, letting them offload some of their cognitive tasks to another device and free up some of their brainpower for other, more important things. Instead of looking up the best route to the bank on a busy morning, we can just have our digital assistant do it.

Sentiment analysis is the use of NLP techniques to study people’s reactions and feelings to a phenomenon, as communicated by their use of language. Capturing the sentiment of a statement, like interpreting whether a review of a product is good or bad, can provide companies with substantial information regarding how their product is being received.

Automatically organizing text documents is another application of NLP. Companies like Google and Yahoo use NLP algorithms to classify email documents, putting them in the appropriate bins such as “social” or “promotions”. They also use these techniques to identify spam and prevent it from reaching your inbox.

Groups have also developed NLP techniques are being used to identify potential job hires, finding them based on relevant skills. Hiring managers are also using NLP techniques to help them sort through lists of applicants.

NLP techniques are also being used to enhance healthcare. NLP can be used to improve the detection of diseases. Health records can be analyzed and symptoms extracted by NLP algorithms, which can then be used to suggest possible diagnoses. One example of this is Amazon’s Comprehend Medical platform, which analyzes health records and extracts diseases and treatments. Healthcare applications of NLP also extend to mental health. There are apps such as WoeBot, which talks users through a variety of anxiety management techniques based in Cognitive Behavioral Therapy.

## To Learn More

Recommended Natural Language Processing Courses | Offered By | Duration | Difficulty |
---|---|---|---|

| IBM | 9 Hours | Beginner |

Deep Learning AI | 9 Hours | Intermediate | |

Intel Software | 12 Hours | Intermediate | |

Higher School of Economics | 34 Hours | Advanced |

### AI 101

# What is Bayes Theorem?

If you’ve been learning about data science or machine learning, there’s a good chance you’ve heard the term “Bayes Theorem” before, or a “Bayes classifier”. These concepts can be somewhat confusing, especially if you aren’t used to thinking of probability from a traditional, frequentist statistics perspective. This article will attempt to explain the principles behind Bayes Theorem and how it’s used in machine learning.

## Defining Bayes Theorem

Bayes Theorem is a method of calculating conditional probability. The traditional method of calculating conditional probability (the probability that one event occurs given the occurrence of a different event) is to use the conditional probability formula, calculating the joint probability of event one and event two occurring at the same time, and then dividing it by the probability of event two occurring. However, conditional probability can also be calculated in a slightly different fashion by using Bayes Theorem.

When calculating conditional probability with Bayes theorem, you use the following steps:

- Determine the probability of condition B being true, assuming that condition A is true.
- Determine the probability of event A being true.
- Multiply the two probabilities together.
- Divide by the probability of event B occurring.

This means that the formula for Bayes Theorem could be expressed like this:

P(A|B) = P(B|A)*P(A) / P(B)

Calculating the conditional probability like this is especially useful when the reverse conditional probability can be easily calculated, or when calculating the joint probability would be too challenging.

## A Practical Example

This might be easier to interpret if we spend some time looking at an example of how you would apply Bayesian reasoning and Bayes Theorem. Let’s assume you were playing a simple game where multiple participants tell you a story and you have to determine which one of the participants is lying to you. Let’s fill in the equation for Bayes Theorem with the variables in this hypothetical scenario.

We’re trying to predict whether each individual in the game is lying or telling the truth, so if there are three players apart from you, the categorical variables can be expressed as A1, A2, and A3. The evidence for their lies/truth is their behavior. Like when playing poker, you would look for certain “tells” that a person is lying and use those as bits of information to inform your guess. Or if you were allowed to question them it would be any evidence their story doesn’t add up. We can represent the evidence that a person is lying as B.

To be clear, we’re aiming to predict Probability(A is lying/telling the truth|given the evidence of their behavior). To do this we’d want to figure out the probability of B given A, or the probability that their behavior would occur given the person genuinely lying or telling the truth. You’re trying to determine under which conditions the behavior you are seeing would make the most sense. If there are three behaviors you are witnessing, you would do the calculation for each behavior. For example, P(B1, B2, B3 * A). You would then do this for every occurrence of A/for every person in the game aside from yourself. That’s this part of the equation above:

P(B1, B2, B3,|A) * P|A

Finally, we just divide that by the probability of B.

If we received any evidence about the actual probabilities in this equation, we would recreate our probability model, taking the new evidence into account. This is called updating your priors, as you update your assumptions about the prior probability of the observed events occurring.

## Machine Learning Applications

The most common use of Bayes theorem when it comes to machine learning is in the form of the Naive Bayes algorithm.

Naive Bayes is used for the classification of both binary and multi-class datasets, Naive Bayes gets its name because the values assigned to the witnesses evidence/attributes – Bs in P(B1, B2, B3 * A) – are assumed to be independent of one another. It’s assumed that these attributes don’t impact each other in order to simplify the model and make calculations possible, instead of attempting the complex task of calculating the relationships between each of the attributes. Despite this simplified model, Naive Bayes tends to perform quite well as a classification algorithm, even when this assumption probably isn’t true (which is most of the time).

There are also commonly used variants of the Naive Bayes classifier such as Multinomial Naive Bayes, Bernoulli Naive Bayes, and Gaussian Naive Bayes.

Multinomial Naive Bayes algorithms are often used to classify documents, as it is effective at interpreting the frequency of words within a document.

Bernoulli Naive Bayes operates similarly to Multinomial Naive Bayes, but the predictions rendered by the algorithm are booleans. This means that when predicting a class the values will be binary, no or yes. In the domain of text classification, a Bernoulli Naive Bayes algorithm would assign the parameters a yes or no based on whether or not a word is found within the text document.

If the value of the predictors/features aren’t discrete but are instead continuous, Gaussian Naive Bayes can be used. It’s assumed that the values the continuous features have been sampled from a gaussian distribution.

### AI 101

# What are RNNs and LSTMs in Deep Learning?

Many of the most impressive advances in natural language processing and AI chatbots are driven by Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks. RNNs and LSTMs are special neural network architectures that are able to process sequential data, data where chronological ordering matters. LSTMs are essentially improved versions of RNNs, capable of interpreting longer sequences of data. Let’s take a look at how RNNs and LSTMS are structured and how they enable the creation of sophisticated natural language processing systems.

**Feed-Forward Neural Networks**

So before we talk about how Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) work, we should discuss the format of a neural network in general.

A neural network is intended to examine data and learn relevant patterns, so that these patterns can be applied to other data and new data can be classified. Neural networks are divided into three sections: an input layer, a hidden layer (or multiple hidden layers), and an output layer.

The input layer is what takes in the data into the neural network, while the hidden layers are what learn the patterns in the data. The hidden layers in the dataset are connected to the input and output layers by “weights” and “biases” which are just assumptions of how the data points are related to each other. These weights are adjusted during training. As the network trains, the model’s guesses about the training data (the output values) are compared against the actual training labels. During the course of training, the network should (hopefully) get more accurate at predicting relationships between data points, so it can accurately classify new data points. Deep neural networks are networks that have more layers in the middle/more hidden layers. The more hidden layers and more neurons/nodes the model has, the better the model can recognize patterns in the data.

Regular, feed-forward neural networks, like the ones I’ve described above are often called “dense neural networks”. These dense neural networks are combined with different network architectures that specialize in interpreting different kinds of data.

**Recurrent Neural Networks**

Recurrent Neural Networks take the general principle of feed-forward neural networks and enable them to handle sequential data by giving the model an internal memory. The “Recurrent” portion of the RNN name comes from the fact that the input and outputs loop. Once the output of the network is produced, the output is copied and returned to the network as input. When making a decision, not only the current input and output are analyzed, but the previous input is also considered. To put that another way, if the initial input for the network is X and the output is H, both H and X1 (the next input in the data sequence) are fed into the network for the next round of learning. In this way, the context of the data (the previous inputs) is preserved as the network trains.

The result of this architecture is that RNNs are capable fo handling sequential data. However, RNNs suffer from a couple of issues. RNNs suffer from the vanishing gradient and exploding gradient problems.

The length of sequences that an RNN can interpret are rather limited, especially in comparison to LSTMs.

**Long Short-Term Memory Networks**

Long Short-Term Memory networks can be considered extensions of RNNs, once more applying the concept of preserving the context of inputs. However, LSTMs have been modified in several important ways that allow them to interpret past data with superior methods. The alterations made to LSTMs deal with the vanishing gradient problem and enable LSTMs to consider much longer input sequences.

LSTM models are made up of three different components, or gates. There’s an input gate, an output gate, and a forget gate. Much like RNNs, LSTMs take inputs from the previous timestep into account when modifying the model’s memory and input weights. The input gate makes decisions about which values are important and should be let through the model. A sigmoid function is used in the input gate, which makes determinations about which values to pass on through the recurrent network. Zero drops the value, while 1 preserves it. A TanH function is used here as well, which decides how important to the model the input values are, ranging from -1 to 1.

After the current inputs and memory state are accounted for, the output gate decides which values to push to the next time step. In the output gate, the values are analyzed and assigned an importance ranging from -1 to 1. This regulates the data before it is carried on to the next time-step calculation. Finally, the job of the forget gate is to drop information that the model deems unnecessary to make a decision about the nature of the input values. The forget gate uses a sigmoid function on the values, outputting numbers between 0 (forget this) and 1 (keep this).

An LSTM neural network is made out of both special LSTM layers that can interpret sequential word data and the densely connected like those described above. Once the data moves through the LSTM layers, it proceeds into the densely connected layers.

### AI 101

# What is K-Nearest Neighbors?

K-Nearest Neighbors is a machine learning technique and algorithm that can be used for both regression and classification tasks. K-Nearest Neighbors examines the labels of a chosen number of data points surrounding a target data point, in order to make a prediction about the class that the data point falls into. K-Nearest Neighbors (KNN) is a conceptually simple yet very powerful algorithm, and for those reasons, it’s one of the most popular machine learning algorithms. Let’s take a deep dive into the KNN algorithm and see exactly how it works. Having a good understanding of how KNN operates will let you appreciated the best and worst use cases for KNN.

## An Overview Of KNN

Let’s visualize a dataset on a 2D plane. Picture a bunch of data points on a graph, spread out along the graph in small clusters. KNN examines the distribution of the data points and, depending on the arguments given to the model, it separates the data points into groups. These groups are then assigned a label. The primary assumption that a KNN model makes is that data points/instances which exist in close proximity to each other are highly similar, while if a data point is far away from another group it’s dissimilar to those data points.

A KNN model calculates similarity using the distance between two points on a graph. The greater the distance between the points, the less similar they are. There are multiple ways of calculating the distance between points, but the most common distance metric is just Euclidean distance (the distance between two points in a straight line).

KNN is a supervised learning algorithm, meaning that the examples in the dataset must have labels assigned to them/their classes must be known. There are two other important things to know about KNN. First, KNN is a non-parametric algorithm. This means that no assumptions about the dataset are made when the model is used. Rather, the model is constructed entirely from the provided data. Second, there is no splitting of the dataset into training and test sets when using KNN. KNN makes no generalizations between a training and testing set, so all the training data is also used when the model is asked to make predictions.

## How The KNN Algorithm Operates

A KNN algorithm goes through three main phases as it is carried out:

- Setting K to the chosen number of neighbors.
- Calculating the distance between a provided/test example and the dataset examples.
- Sorting the calculated distances.
- Getting the labels of the top K entries.
- Returning a prediction about the test example.

In the first step, K is chosen by the user and it tells the algorithm how many neighbors (how many surrounding data points) should be considered when rendering a judgment about the group the target example belongs to. In the second step, note that the model checks the distance between the target example and every example in the dataset. The distances are then added into a list and sorted. Afterward, the sorted list is checked and the labels for the top K elements are returned. In other words, if K is set to 5, the model checks the labels of the top 5 closest data points to the target data point. When rendering a prediction about the target data point, it matters if the task is a regression or classification task. For a regression task, the mean of the top K labels is used, while the mode of the top K labels is used in the case of classification.

The exact mathematical operations used to carry out KNN differ depending on the chosen distance metric. If you would like to learn more about how the metrics are calculated, you can read about some of the most common distance metrics, such as Euclidean, Manhattan, and Minkowski.

## Why The Value Of K Matters

The main limitation when using KNN is that in an improper value of K (the wrong number of neighbors to be considered) might be chosen. If this happen, the predictions that are returned can be off substantially. It’s very important that, when using a KNN algorithm, the proper value for K is chosen. You want to choose a value for K that maximizes the model’s ability to make predictions on unseen data while reducing the number of errors it makes.

Lower values of K mean that the predictions rendered by the KNN are less stable and reliable. To get an intuition of why this is so, consider a case where we have 7 neighbors around a target data point. Let’s assume that the KNN model is working with a K value of 2 (we’re asking it to look at the two closest neighbors to make a prediction). If the vast majority of the neighbors (five out of seven) belong to the Blue class, but the two closest neighbors just happen to be Red, the model will predict that the query example is Red. Despite the model’s guess, in such a scenario Blue would be a better guess.

If this is the case, why not just choose the highest K value we can? This is because telling the model to consider too many neighbors will also reduce accuracy. As the radius that the KNN model considers increases, it will eventually start considering data points that are closer to other groups than they are the target data point and misclassification will start occurring. For example, even if the point that was initially chosen was in one of the red regions above, if K was set too high, the model would reach into the other regions to consider points. When using a KNN model, different values of K are tried to see which value gives the model the best performance.

## KNN Pros And Cons

Let’s examine some of the pros and cons of the KNN model.

**Pros:**

KNN can be used for both regression and classification tasks, unlike some other supervised learning algorithms.

KNN is highly accurate and simple to use. It’s easy to interpret, understand, and implement.

KNN doesn’t make any assumptions about the data, meaning it can be used for a wide variety of problems.

**Cons:**

KNN stores most or all of the data, which means that the model requires a lot of memory and its computationally expensive. Large datasets can also cause predictions to be take a long time.

KNN proves to be very sensitive to the scale of the dataset and it can be thrown off by irrelevant features fairly easily in comparison to other models.

## Summing Up

K-Nearest Neighbors is one of the simplest machine learning algorithms. Despite how simple KNN is, in concept, it’s also a powerful algorithm that gives fairly high accuracy on most problems. When you use KNN, be sure to experiment with various values of K in order to find the number that provides the highest accuracy.