Connect with us

AI News

Researchers Have Developed A System to Monitor Risky Behavior in Factories

mm

Published

 on

Researchers at the University of Washington have developed a new system capable of monitoring factory and warehouse workers and warn them of risky behaviors in real time. The new system relies on machine learning to get this done.  

There were about 350,000 incidents of workers taking time off due to muscle, nerve, ligament, or tendon injuries, according to the U.S. Bureau of Labor Statistics. The workers with the highest number of incidents were those working in factories and warehouses. 

These incidents are normally musculoskeletal disorders that happen when people do certain tasks that cause strain on the body. These researchers looked for a way to detect these behaviors so that workers can be more aware. 

The algorithm of the new system divides certain tasks, such as lifting boxes off high shelves and carrying objects, into individual actions. A risk score is then calculated for each one.

Ashis Banerjee, an assistant professor in both the industrial & systems engineering and mechanical engineering departments at the UW, is one of the senior authors.

“Right now workers can do a self-assessment where they fill out their daily tasks on a table to estimate how risky their activities are,” she said. “But that’s time consuming, and it’s hard for people to see how it’s directly benefiting them. Now we have made this whole process fully automated. Our plan is to put it in a smartphone app so that workers can even monitor themselves and get immediate feedback.”

Those current self-assessments rely on snapshots of tasks being performed. The position of each joint gets scored, and they are all added up to determine a risk score. This new algorithm will make it much more simple as it is able to score an entire action instead. 

The team tested the algorithm by using a dataset with 20 three-minute videos of people doing 17 activities. These activities are commonplace among warehouses and factories. 

“One of the tasks we had people do was pick up a box from a rack and place it on a table,” said first author Behnoosh Parsa, a UW mechanical engineering doctoral student. “We wanted to capture different scenarios, so sometimes they would have to stretch their arms, twist their bodies or bend to pick something up.”

The researchers then used a Microsoft Kinect camera to capture the dataset, and 3D videos were recorded. They then determined what was happening to the person’s joints during the tasks. 

The algorithm was first able to determine risk scores for each video frame. Eventually, it was able to tell when a task started and finished so that it could give a risk score for the entire action. 

The team’s next step is developing an app that these factory workers and supervisors can use. They want it to be able to detect and warn of moderately risky actions and high-risk actions. 

In the long term, they hope that robots will be able to be used in these factories and utilize the algorithm to help keep workers safe. 

“Factories and warehouses have used automation for several decades. Now that people are starting to work in settings where robots are used, we have a unique opportunity to split up the work so that the robots are doing the risky jobs,” Banerjee said. “Robots and humans could have an active collaboration, where a robot can say, ‘I see that you are picking up these heavy objects from the top shelf and I think you may be doing that a lot of times. Let me help you.'”

The research was published in IEEE Robotics and Automation Letters on June 26, and it will be presented at the IEEE International Conference on Automation Science and Engineering in Vancouver, British Columbia on August 23. 

 

Spread the love

AI News

The Use of Artificial Intelligence In Music Is getting More And More Sophisticated

mm

Published

on

The application of artificial intelligence in music has been increasing for a few years now.  As Kumba Sennaar explains, the three current applications of AI in music industry lies in music composition, music streaming and music monetization where AI platforms are helping artists monetize their music content based on data from user activity.

It all started way back in 1957 when Learn Hiller and Leonard Issacson programmed Illiac I to produce “Illiac Suite for String Quartet, the first work completely written by artificial intelligence, then, 60 years on, it turned into complete albums like the Taryn Southern album produced by Amper Music in 2017. Currently, Southern has over 452 thousand subscribers on YouTube and “Lovesick” a song from the album was listened and viewed by more than 45,000 viewers.

But since then, the application of AI in this field has both got more sophisticated and branched out further. Open AI has created MuseNet, as the company explains, “a deep neural network that can generate 4-minute musical compositions with 10 different instruments and can combine styles from country to Mozart to the Beatles. MuseNet was not explicitly programmed with our understanding of music, but instead discovered patterns of harmony, rhythm, and style by learning to predict the next token in hundreds of thousands of MIDI files. MuseNet uses the same general-purpose unsupervised technology as GPT-2, a large-scale transformer model trained to predict the next token in a sequence, whether audio or text.

On the other hand, as GeekWire, among others, reports, Dr. Mick Grierson, computer scientist and musician from Goldsmiths, University of London was recently commissioned by the Italian car manufacturer Fiat to produce a list of 50 most iconic pop songs using algorithms. His analytical software was used to “determine what makes the songs noteworthy, including key, the number of beats per minute, chord variety, lyrical content, timbral variety, and sonic variance.”

According to his results, the song that had the best cocktail of the set parameters was Nirvana’s “Smells Like Teen Spirit,” ahead of U2’s “One” and John Lennon’s “Imagine”. Nirvana’s song was then used by FIAT to promote its new FIAT 500 model. Grierson explained that the algorithms showed that, ‘the sounds these songs use and the way they are combined is highly unique in each case.’

Another application was prepared by musicnn library, which as explained, uses deep convolutional neural networks to automatically tag songs. The models “that are included achieve the best scores in public evaluation benchmarks.” music (as in musician) and its best models have been released as an open-source library. The project has been developed by the Music Technology Group of the Universitat Pompeu Fabra, located in Barcelona, Spain.

In his analysis of the application, Jordi Pons used musicnn to analyze and tag another iconic song, Queen’s “Bohemian Rhapsody.” He noticed that the singing voice of Freddie Mercury was tagged as a female voice, while its other predictions were quite accurate. Making musicnn available as open-source makes it possible to further refine the tagging process.

Reporting on the use of AI in music streaming, Digital Music News concludes that “the introduction of artificial intelligence and machine learning technologies has greatly improved the way we listen to music.  Thanks to rapid advances in the AI and similar technologies, we are most likely going to see plenty of futuristic improvements in the upcoming years.”

Spread the love
Continue Reading

AI News

Scientists Use Artificial Intelligence to Estimate Dark Matter in the Universe

mm

Published

on

Scientists from the Department of Physics and the Department of Computer Science at ETH Zurich are using artificial intelligence to learn more about our universe. They are contributing to the methods used in order to estimate the amount of dark matter present. The group of scientists developed machine learning algorithms that are similar to those used by Facebook and other social media companies for facial recognition. These algorithms help analyze cosmological data. The new research and results were published in the scientific journal Physical Review D. 

Tomasz Kacprzak, a researcher from the Institute of Particle Physics and Astrophysics, explained the link between facial recognition and estimating dark matter in the universe. 

“Facebook uses its algorithms to find eyes, mouths or ears in images; we use ours to look for the tell-tale signs of dark matter and dark energy,” he explained. 

Dark matter is not able to be seen directly by telescope images, but it does bend the path of light rays that are coming to earth from other galaxies. This is called weak gravitational lensing, and it distorts the images of those galaxies. 

The distortion that takes place is then used by scientists. They build maps based on mass of the sky, and they show where dark matter is. The scientists then take theoretical predictions of the location of dark matter and compare them to the built maps, and they look for the ones that most match the data.

The described method with maps is traditionally done by using human-designed statistics, which help explain how parts of the maps relate to one another. The problem that arises with this method is that it is not well suited for detecting the complex patterns that are present in such maps. 

“In our recent work, we have used a completely new methodology…Instead of inventing the appropriate statistical analysis ourselves, we let computers do the job,” Alexandre Refregier said. 

Aurelien Lucchi and his team from the Data Analytics Lab at the Department of Computer Science, along with Janis Fluri, a PhD student from Refregier’s group and the lead author of the study, worked together using machine learning algorithms. They used them to establish deep artificial neural networks that are able to learn to extract as much information from the dark matter maps as possible. 

The group of scientists first gave the neural network computer-generated data that simulated the universe. The neural network eventually taught itself which features to look for and to extract large amounts of information.

These neural networks outperformed the human-made analysis. In total, they were 30% more accurate than the traditional methods based on human-made statistical analysis. If cosmologists wanted to achieve the same accuracy rate without using these algorithms, they would have to dedicate at least twice the amount of observation time. 

After these methods were established, the scientists then used them to create dark matter maps based on the KiDS-450 dataset. 

“This is the first time such machine learning tools have been used in this context, and we found that the deep artificial neural network enables us to extract more information from the data than previous approaches. We believe that this usage of machine learning in cosmology will have many future applications,” Fluri said. 

The scientists now want to use this method on bigger image sets such as the Dark Energy Survey, and the neural networks will start to take on new information about dark matter.

 

Spread the love
Continue Reading

AI News

Element AI Closes Series B – Raises $151 Million To Bring AI To More Companies

mm

Published

on

The Canadian startup Element AI, based out of Montreal, has recently completed its series B round of funding, raising $151 million dollars to fund their AI expansion goals. Element AI’s goal is to bring the power of AI to companies that aren’t typically likely to use it, making AI available to those who aren’t savvy regarding AI and computer technologies.

Element AI was founded in 2016, and it aims to dramatically expand the use of AI outside of the traditional fields like retail and security. Element AI hopes to “turn research and industry expertise into software solutions that exponentially learn and improve”, focusing specifically on the supply chain and financial services sectors.

According to VentureBeat, Element AI’s successful series B funding managed to accrue over $151.3 million dollars from both old and new investors. The startup plans to invest this money in the marketing of its current product line as well as in the development of new AI solutions.  The CEO of Element AI, Jean-François Gagné, put out a recent press release remarking that the company is excited to start working with their new partners who wish to explore the potential of AI in non-traditional market areas. According to Gagné, Element AI remains fully committed to operationalizing AI, despite it being “the industry’s toughest challenge”.

Although AI is frequently in the headlines, AI applications are primarily found in a few specific fields. Element AI was founded with the idea that AI will be the next major transformative technology, although not every business is equipped to take advantage of it. The disparity between technology companies that are positioned to take advantage of AI and non-tech companies creates a substantial divide between companies who can use AI and those that can’t. Element AI wants to bring AI algorithms to companies that lack the experience to properly utilize AI.

Element AI set out to achieve this by providing consultation to companies that could potentially benefit from utilizing AI, helping them identify areas where they could implement AI solutions. The company has since expanded to offering other services, offering products tailored to specific industries like retail/logistics, financial services, manufacturing, and insurance. The list of specialized products that the company offers is likely to grow, thanks to the substantial increase in funding the company has received.

Element AI is not the only company to try and operationalize AI, with other companies like UiPath creating tools designed to allow companies to automate repetitive tasks. However, Element has definitely been the most successful at bringing AI to a wider section of society.

As reported by CrunchBase, Element AI has worked with many different companies, including Gore Mutual, Bank of Canada, National Bank, LG, and others. In terms of investors, many of their supporters from the series A investment have returned to back the company a second time, including Real Venture, BDC Capital, Hanwha Asset Management and DCVC. Some of the new investors in the company include Gouvernement du Quebec and McKinsey & Company.

According to TechCrunch, McKinsey is a management consultancy company, and though at first glance the company seems like a competitor to Element AI, McKinsey seems to be funneling customers to Element. Many system integrators don’t have the experience with AI needed to ascertain the best uses for the technology, while Element AI has experience with emerging technologies and computing. QuantumBlack, the AI and advanced analytics division of McKinsey, has also established its own offices in Montreal, where they will be collaborating on projects with Element AI.

Element AI also stated in its press release that the company would be using the newly acquired funds to expand its operations across the globe. Currently, the company has approximately 500 employees located in offices around Singapore, South Korea, Seoul, London, and Toronto.

Element AI isn’t the only Canadian AI startup to see recent success. The company CDPQ recently launched its own AI funding initiative intended to advance the commercialization of AI platforms throughout Quebec.

Spread the love
Continue Reading