Connect with us

Healthcare

AI Discovers Smell Genes Linked To Cancer Outcomes

mm

Published

 on

A team of researchers from Oxford University has recently used AI to discover a potential link between colon cancer and the expression of specific smell-sensing genes. As Phys.org reports, researchers from Oxford University and the University of Zurich have recently, assisted by an AI model, discovered that the expression of specific smell-sensing genes within the colon cancer cells indicates a higher probability of worse outcomes.

Genes are expressed when the information that is found within our DNA is used to make molecules like proteins. Gene expression often controls how many proteins are made and when they are made, acting on/off switches. Human beings have approximately 400 genes responsible for our sense of smell, but rather crucially for the study, the genes are also expressed in other parts of the body, aside from the nose. If these smell genes are expressed, it means that the instructions for these genes are being read and carried out. By making changes to the cells, scientists can manipulate the level to which genes are expressed and used.

The study that was recently published in Molecular Systems Biology was lead by Dr. Heba Sailem of the Insitute of Biomedical Engineering and Oxford University. Sailem and fellow researchers examined how cells in the body are organized, aiming to study how cancer leads to the loss of tissue structure in the body. In order to develop effective therapies, scientists must understand which genes play a role in tissue alteration. The research team employed computer vision algorithms to detect changes within the organization of cell samples. The AI model was given image data collected by robotic microscopy, which contains millions of images of colon cancer cells.

The research team then experimented by reducing the expression of every gene in the individual colon cancer cells. After perturbations were applied to the genes and their expression decreased, the researchers found that smell-sensing genes appear to be strongly correlated with how cells align and spread. It appeared that reducing the expression of smell genes could potentially control the spread of cells by reducing their ability to move. On the other hand, cell motility could be increased by having higher expression levels of the smell genes in question.

Sailem explained that the smell genes are like a “sixth sense” that the cancer cells can use to find their way outside of the tumor environment, which is toxic, and spread to other regions of the patient’s body. Sailem went on to explain just how important AI was in making this discovery. The AI model used by the researchers was able to greatly increase the speed the research was carried out at. The AI model, after being trained on a large database of gene functions and appearances, is able to automate the task of identifying certain types of cells within images. Sailem explained:

“Using the developed AI system, we can now learn much more from these experiments and accelerate the identification of genes that alter the structure of tissues in cancer.

CRIPSR (Clustered Regularly Interspaced Short Palindromic Repeats), the gene-editing technology, is the primary way that gene expression levels for the approximately 20,000 genes in the cell are reduced to study how gene expression impacts cancer cells. When combined with advances in gene-editing technology, the research done by Sailem and colleagues could enable new methods of identifying the roles different genes play in different types of cancer, which could enable new kinds of therapies.