Connect with us

AI News

AI Brings New Potential for Prosthetics with 3D-Printed Hand

mm

Published

 on

A new 3D-printed prosthetic hand paired with AI has been developed by Biological Systems Lab at Hiroshima University in Japan. This new technology can dramatically change the way prosthetics work. It is another step in the direction of combining both the physical human body with artificial intelligence, something that we are most definitely heading towards. 

The 3D-printed prosthetic hand has been paired with a computer interface to create the lightest and cheapest model yet. This version is the most reactive to motion intent that we have seen. Before the current model, they were normally made from metal which caused them to be both heavier and more expensive. The way this new technology works is by a neural network that is trained to recognize certain combined signals, these signals have been named “muscle synergies” by the engineers working on the project. 

The prosthetic hand has five independent fingers that can make complex movements. Compared to previous models, these fingers are able to move around more as well as all at the same time. These developments make it possible for the hand to be used for tasks like holding items such bottles and pens. Whenever the user of the technology wants to move the hand or fingers in a certain way, they only have to imagine it. Professor Toshio Tsuji of the Graduate School of Engineering at Hiroshima University explained the way a user can move the 3D-printed hand. 

“The patient just thinks about the motion of the hand and then the robot automatically moves. The robot is like a part of his body. You can control the robot as you want. We will combine the human body and machine like one living body.”

The 3D-printed hand works when electrodes in the prosthetic measures electrical signals that come from nerves through the skin. It can be compared to the way ECG and heart rates work. The measured signals are then sent to a computer within five milliseconds at which point the computer recognizes the desired movement. The computer then sends the signal back to the hand. 

There is a neural network that helps the computer learn the different complex movements, it has been named Cybernetic Interface. It can differentiate between the 5 fingers so that there can be individual movements. Professor Tsuji also spoke on this aspect of the new technology.

“This is one of the distinctive features of this project. The machine can learn simple basic motions and then combine and then produce complicated motions.”

The technology was tested among seven people, and one of the seven was an amputee who has been wearing a prosthesis for 17 years. The patients performed daily tasks, and they had a 95% accuracy rate for single simple motion and a 93% rate for complex movements. The prosthetics that were used in this specific test were only trained for 5 different movements with each finger; there could be many more complex movements in the future. With just these 5 trained movements, the amputee patient was able to pick up and put down things like bottles an notebooks. 

There are numerous possibilities for this technology. It could decrease cost while providing extremely functional prosthetic hands to amputee patients. There are still some problems like muscle fatigue and the capability of software recognizing many complex movements. 

This work was completed by Hiroshima University Biological Systems Engineering Lab along with patients from the Robot Rehabilitation Center in the Hygo Institute of Assistive Technology, Kobe. The company Kinki Gishi was responsible for creating the socket which was used on the arm of the amputee patient. 

 

Spread the love

AI News

Big Developments Bring Us Closer to Fully Untethered Soft Robots

mm

Published

on

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Caltech have developed new soft robotic systems that are inspired by origami. These new systems are able to move and change shape in response to external stimuli. The new developments bring us closer to having fully untethered soft robots. The soft robots that we possess today use external power and control. Because of this, they have to be tethered to off-board systems with hard components. 

The research was published in Science Robotics. Jennifer A. Lewis, a Hansjorg Wyss Professor of Biologically Inspired Engineering at SEAS and co-lead author of the study, spoke about the new developments. 

“The ability to integrate active materials within 3D-printed objects enables the design and fabrication of entirely new classes of soft robotic matter,” she said. 

The researchers used origami as a model to create multifunctional soft robots. Origami, through sequential folds, is able to change into multiple shapes and functionalities while staying in a single structure. The research team used liquid crystal elastomers that are able to change their shape when exposed to heat. The team utilized 3D-printing to get two types of soft hinges. Those hinges fold depending on the temperature, and they can be programmed to fold into a specific order. 

Arda Kotikan is a graduate student at SEAS and the Graduate School of Arts and Sciences and the co-first author of the paper. 

“With our method of 3D printing active hinges, we have full programmability over temperature response, the amount of torque the hinges can exert, their bending angle, and fold orientation. Our fabrication method facilitates integrating these active components with other materials,” she said. 

Connor McMahan is a graduate student at Caltech and co-first author of the paper as well. 

“Using hinges makes it easier to program robotic functions and control how a robot will change shape. Instead of having the entire body of a soft robot deform in ways that can be difficult to predict, you only need to program how a few small regions of your structure will respond to changes in temperature,” he said.

The team of researchers built multiple soft devices. One of these devices was an untethered soft robot called “Rollbot.” It starts as an 8 centimeters long and 4 centimeters wide flat sheet. When it is in contact with a hot surface of around 200°C, one set of the hinges folds and shapes the robot into a pentagonal wheel. 

On each of the five sides of the wheel, there are more sets of hinges that fold when in contact with a hot surface. 

“Many existing soft robots require a tether to external power and control systems or are limited by the amount of force they can exert. These active hinges are useful because they allow soft robots to operate in environments where tethers are impractical and to lift objects many times heavier than the hinges,” said McMahan.

This research that was conducted focused solely on temperature responses. In the future, the liquid crystal elastomers will be studied further as they are also able to respond to light, pH, humidity, and other external stimuli. 

“This work demonstrates how the combination of responsive polymers in an architected composite can lead to materials with self-actuation in response to different stimuli. In the future, such materials can be programmed to perform ever more complex tasks, blurring the boundaries between materials and robots,” said Chiara Daraio, Professor of Mechanical Engineering and Applied Physics at Caltech and co-lead author of the study.

The research included co-authors Emily C. Davidson, Jalilah M. Muhammad, and Robert D. Weeks. The work was supported by the Army Research Office, Harvard Materials Research Science and Engineering Center through the National Science Foundation, and the NASA Space Technology Research Fellowship. 

 

Spread the love
Continue Reading

AI News

Modeling Artificial Neural Networks (ANNs) On Animal Brains

mm

Published

on

Cold Spring Harbor Laboratory (CSHL) neuroscientist Anthony Zador has shown that evolution and animal brains can be used as inspiration for machine learning. It can be beneficial in helping AI solve many different problems. 

According to CSHL neuroscientist Anthony Zador, Artificial Intelligence (AI) can be greatly improved by looking to animal brains. WIth this approach, neuroscientists and those working in the AI field have a new way of solving some of AI’s most pressing problems. 

Anthony Zador, M.D., Ph.D., has dedicated much of his career to explaining the complex neural networks within the living brain. He goes all the way down to the individual neuron. In the beginning of his career, he focused on something different. He studied artificial neural networks (ANNs). ANNs are computing systems that have been the basis of much of our developments in the AI secor. They are modeled after the networks in both animal and human brains. Until now, this is where the concept stopped. 

A recent perspective piece, authored by Zador, was published in Nature Communications. In that piece, Zador detailed how new and improved learning algorithms are helping AI systems develop to a point where they greatly outperform humans. This happens in a variety of tasks, problems, and games like chess and poker. Even though some of these computers are able to perform so well in a variety of complex problems, they are often confused by things us humans would consider simple. 

If those working in this field were able to solve this problem, robots could reach a point in development where they could learn to do extremely natural and organic things such as stalking prey or building a nest. They could even do something like washing the dishes, which has proven to be extremely difficult for robots. 

“The things that we find hard, like abstract thought or chess-playing, are actually not the hard thing for machines. The things that we find easy, like interacting with the physical world, that’s what’s hard,” Zador explained. “The reason that we think it’s easy is that we had half a billion years of evolution that has wired up our circuits so that we do it effortlessly.”

Zador thinks that if we want robots to achieve quick learning, something that would change everything in the sector, we might not want to only look at a perfected general learning algorithm. What scientists and others should do is look towards biological neural networks that have been given to us through nature and evolution. These could be used as a base to build on for quick and easy learning of specific types of tasks, tasks that are important for survival. 

Zador talks about what we can learn from squirrels living in our own backyards if we just looked at genetics, neural networks, and genetic predisposition.

“You have squirrels that can jump from tree to tree within a few weeks after birth, but we don’t have mice learning the same thing. Why not?” Zador said. “It’s because one is genetically predetermined to become a tree-dwelling creature.”

Zador believes that one thing that could come from genetic predisposition is the innate circuitry that is within an animal. It helps that animal and guides its early learning. One of the problems with attaching this to the AI world is that the networks used in machine learning, ones that are pursued by AI experts, are much more generalized than the ones in nature. 

If we are able to get to a point where ANNs reach a point in development where they can be modeled after the things we see in nature, robots could begin to do tasks that at one point were extremely difficult. 

 

Spread the love
Continue Reading

AI News

California Start-Up Cerebras Has Developed World’s Biggest Chip For AI

mm

Published

on

California start-up Cerebras has developed the world’s biggest computer chip to be used to train AI systems. It is set to be revealed after being in development for four years. 

Contrary to the normal progression of chips getting smaller, the new one developed by Cerebras has a surface area bigger than an IPad. It is more than 80 times bigger than any competitors, and it uses a large amount of electricity. 

The new development represents the astounding amount of computing power that is being used in AI. Included in this is the $1bn investment from Microsoft into OpenAI that was announced last month. OpenAI is trying to develop an Artificial General Intelligence (AGI) which will be a giant leap forward, something that will change much of what we know. 

Cerebras is unique in this field because of the enormous size of their chip. Other companies endlessly work to create extremely small chips. Most of our advanced chips today are assembled like this. According to Patrick Moorhead, a US chip analyst, Cerebras basically put an entire computing cluster on a single chip. 

Cerebras is looking to join the likes of other companies like Intel, Habana, Labs, and the UK start-up Graphcore. They are all building a new generation of specialized AI chips. This development in AI chips is reaching its biggest stage yet as the companies are going to start delivering the first chips to customers by the end of the year. Among the companies, Cerebras will be looking to be the go-to for massive computing tasks that are being done by our largest internet companies. 

There are many more companies and start-ups involved in this space including Graphcore, Wave Computing, and the Chinese based start-up Cambricon. They are all looking to develop specialized AI chips used for inference. They want to take a trained AI system and use it in real-world scenarios. 

Normally, it takes a long time for the development process to finish and actual products be shipped to people and companies. According to Linley Group, a US chip research firm, there are a lot of technical issues that are time-consuming. Although it takes awhile for products to be developed, there is still a big interest in these companies. Cerebras has raised over $200m in venture capital. As of late last year, they were valued at about $1.6bn. There is a lot of projected growth for the global revenue of these deep learning chipsets. 

The reason that these companies are focusing on this type of processor for AI is because of the huge amounts of data that are needed in order to train neural networks. Those neural networks are then used in deep-learning systems and are responsible for things such as image recognition. 

The chip from Cerebras is a single chip made out of a 300mm diameter circular wafer. It is the largest silicon disc to be made in the current chip factories. The norm is for these wafers to be split up into many individual chips instead of one giant one. Anyone who tried before ran into issues with putting circuitry into something so big. Cerebras got past this by connecting the different sectors on the wafers. Once this is done, they are able to communicate with each other and become a big processor. 

Cerebras is looking forward and will try to link cores in a matrix pattern to be able to communicate with each other. They want to connect 400,000 cores while keeping all of the processing on one single chip. 

It will be exciting to see these developments move forward with Cerebras and other companies continuing to advance our AI systems. 

 

Spread the love
Continue Reading