Artificial Intelligence
ãã£ãŒããã§ã€ã¯æ€åºåšãæ°å¢å°ã远æ±ïŒæœå𿡿£ã¢ãã«ãšGAN

ãªãããªã³
æè¿ããã£ãŒããã§ã€ã¯æ€åºç ç©¶ã³ãã¥ããã£ã¯ã2017 幎æ«ä»¥éãã»ãŒç¬å çã«å æãããŠããŸãã ãªãŒããšã³ã³ãŒã-ããŒã¹ã®ãã¬ãŒã ã¯ãŒã¯ã¯ãåœæãäžéã®çæ¬ã®å¿µãåŒã³èµ·ãããŸããïŒãã㊠èœèããïŒã以äžãå«ããããã»ã©åæ»ããŠããªãã¢ãŒããã¯ãã£ã«æ³å»åŠçãªé¢å¿ãæã¡å§ããŠããŸãã æœå𿡿£ ãªã©ã®ã¢ãã« DALL-E2 ããã³ å®å®æ¡æ£ãæµå¯Ÿççæãããã¯ãŒã¯ (GAN) ã®åºåãåæ§ã§ãã ããšãã°ãXNUMX æã«ã«ãªãã©ã«ãã¢å€§åŠããŒã¯ã¬ãŒæ ¡ çµæãçºè¡š åœæäž»æµã ã£ãDALL-E 2ã®åºåæ€åºåšã®éçºã«é¢ããç ç©¶ã®ææã
ãã®é¢å¿ã®é«ãŸããåŒãèµ·ãããŠãããšæãããã®ã¯ã2022 å¹Žã«æœå𿡿£ã¢ãã«ã®æ©èœãšå¯çšæ§ãçªç¶é²åããã¯ããŒãºããœãŒã¹ã§ã¢ã¯ã»ã¹ãå¶éãããããšã§ãã ãªãªãŒã¹ æ¥ã«ã¯ DALL-E 2 ãç»å Žããå€ã®çµããã«ã¯ã»ã³ã»ãŒã·ã§ãã«ãª ãªãŒãã³ãœãŒã·ã³ã° å®å®æ¡æ£ã®å®å®å.ai
GAN ã é·å¹Žç ç©¶ããŠãã ãã®æèã§ã¯ãããã»ã©éäžçã§ã¯ãããŸãããã éåžžã«é£ãã 人ã ã説åŸåã®ãã粟緻ãªãããªããŒã¹ã§åçŸããããã«ãããã䜿çšããã å°ãªããšããçŸåšã§ã¯ç±ç·ãããªãŒããšã³ã³ãŒã㌠ããã±ãŒãžãšæ¯èŒãããšã ãã§ã€ã¹ã¹ã¯ãã ããã³ ãã£ãŒããã§ã€ã¹ã©ã â ãããŠåŸè ã®ã©ã€ãã¹ããªãŒãã³ã°ã®ããšãã ãã£ãŒããã§ã€ã¹ã©ã€ã.
åç»ãèŠã
ãããã®å Žåã§ããæŽ»åãäžããèŠå ã¯ããã®åŸã®éçºã¹ããªã³ãã®èŠéãã§ãããšæãããŸãã ãã㪠åæã 2022 æã®å§ãŸãããã㊠XNUMX 幎ã®äž»èŠãªã«ã³ãã¡ã¬ã³ã¹ ã·ãŒãºã³ã¯ãé·å¹Žã«ããããããªåæã®ããŸããŸãªåé¡ã«å¯Ÿããçªç¶ã®äºæ³å€ã®è§£æ±ºçãéªåŽ©ã®ããã«çŸããããšãç¹åŸŽãšããŠããŸããã ãªãªãŒã¹ããããµã³ãã« Google Research ã¯ãç¬èªã®ããã¹ããããããªãžã®å€æãã©ãããã©ãŒã ãéçºããŸããããGoogle Research ã¯ãåºåå¯èœãªæ°ãã Imagen-to-Video T2V ã¢ãŒããã¯ãã£ãçºè¡šããããšã§ããã®åœåã®ç§°è³ãããã«ããæ¶ããŸããã é«è§£ååºŠã®æ å (ã¢ããã¹ã±ãŒã©ãŒã® 7 å±€ãããã¯ãŒã¯çµç±ã®ã¿ã§ãã)ã
ãã®çš®ã®ããšã¯ XNUMX ã€ãããšä¿¡ãããªããStable Diffusion ã®å ±åéçºè ã§ãã Runway ãä»å¹ŽåŸåã« Stable Diffusion ã«ããããªãç»å Žããããšãããstable.ai ã®è¬ãããçŽæãèæ ®ããŠãã ããã åããããªçŽæãããŸãã, ãã ããåãã·ã¹ãã ãæããŠãããã©ããã¯äžæã§ãã ã® äžåã¡ãã»ãŒãž ã¹ã¿ããªãã£ã®CEOãšããã»ã¢ã¹ã¿ã¯æ°ãçŽæãã ããªãŒãã£ãªããããª[ãããŠ] 3Dã.
çªç¶ãããã€ãã®æ°ããæ©èœãæäŸãããå Žåã¯ã©ããªãã§ããããã ãªãŒãã£ãªçæãã¬ãŒã ã¯ãŒã¯ ïŒäžéšã¯æœå𿡿£ã«åºã¥ãïŒãããã³çæã§ããæ°ããæ¡æ£ã¢ãã« æ¬æ Œçãªãã£ã©ã¯ã¿ãŒã¢ãŒã·ã§ã³ãGAN ããã£ãã¥ãŒã¶ãŒãªã©ã®ãéçããã¬ãŒã ã¯ãŒã¯ãæçµçã«ãµããŒããšããŠã®åœ¹å²ãæããã ãããšããèã ä»å±ç© å€éšã®ã¢ãã¡ãŒã·ã§ã³ ãã¬ãŒã ã¯ãŒã¯ãžã®åœ±é¿ãæ¬æ Œçã«åºããå§ããŠããŸãã
èŠããã«ããªãŒããšã³ã³ãŒãããŒã¹ã®ãããªãã£ãŒããã§ã€ã¯ã®æ©èœäžå šã®äžçã¯ã广çã«çœ®ãæããããšããã§ããªãå¯èœæ§ãé«ãããã§ãã é¡ã®äžå€®éšåã¯ãæ¥å¹Žã®ä»é ãŸã§ã«ãæ°äžä»£ã®æ¡æ£ããŒã¹ã®ãã£ãŒããã§ã€ã¯å¯Ÿå¿ãã¯ãããžãŒãã€ãŸã身äœå šäœã ãã§ãªãã·ãŒã³å šäœããã©ããªã¢ãªã¹ãã£ãã¯ã«åœé ã§ããå¯èœæ§ãåãã人æ°ã®ãªãŒãã³ãœãŒã¹ã®ã¢ãããŒãã«ãã£ãŠèŠãé ãããŠããå¯èœæ§ããããŸãã
ãã®ããããããããåãã£ãŒããã§ã€ã¯ç ç©¶ã³ãã¥ããã£ã¯ãç»ååæãçå£ã«åãæ¢ãå§ããŠããããããåã«çæãã以äžã®ç®çãæããå¯èœæ§ãããããšã«æ°ã¥ãå§ããŠããŸãã åœã® LinkedIn ãããã£ãŒã«åç; ãããŠã圌ãã®æã«è² ããªãæœåšç©ºéã®ãã¹ãŠãæééåã«é¢ããŠéæã§ãããšãããã æ¬åœã«åªãããã¯ã¹ãã£ã¬ã³ãã©ãŒãšããŠæ©èœããŸããå®éã«ã¯ããã§ååãããããŸããã
ãã¬ãŒãã©ã³ããŒ
æœå𿡿£ãš GAN ããŒã¹ã®ãã£ãŒããã§ã€ã¯æ€åºã«é¢ããææ°ã® XNUMX ã€ã®è«æã¯ãããããæ¬¡ã®ãšããã§ãã DE-FAKE: ããã¹ãããç»åãžã®æ¡æ£ã¢ãã«ã«ãã£ãŠçæãããåœç»åã®æ€åºãšåž°å±ãCISPA Helmholtz Center for Information Security ãš Salesforce ã®ã³ã©ãã¬ãŒã·ã§ã³ã ãš BLADERUNNER: åæ (AI çæ) StyleGAN ãã§ã€ã¹ã®è¿ éãªå¯ŸçãMITãªã³ã«ãŒã³ç ç©¶æã®ã¢ãã ã»ããªã¢ã³ã»ãŠã©ã³ããã
åŸè ã®è«æã§ã¯ãæ°ããæ¹æ³ã説æããåã«ãç»åã GAN ã«ãã£ãŠçæããããã©ããã倿ããããã®ä»¥åã®ã¢ãããŒããæ€èšããããã«å°ãæéãããããŸã (ãã®è«æã§ã¯ç¹ã« NVIDIA ã® StyleGAN ãã¡ããªãæ±ããŸã)ã
ããã¬ã€ãã£ã»ãã³ããã¡ãœãã â ãããã ç¡æå³ãªåç § 1970 幎代ã«ãã¬ããèŠãŠããªãã£ã人ããŸã㯠1990 å¹Žä»£ã®æ ç»åäœåãèŠéãã人ã«ãšã£ãŠãGAN ã®é¡ã®ç¹å®ã®éšåã確å®ã«å ããåºå®äœçœ®ã«åºã¥ããŠãGAN ã§åœé ãããã³ã³ãã³ããèå¥ããŸãã 'çç£å·¥çš'ã

2022 幎㫠SANS ç ç©¶æã® Web ãã£ã¹ãã«ãã£ãŠææ¡ããããBrady Bunchãææ³ãGAN ããŒã¹ã®é¡ãžã§ãã¬ãŒã¿ãŒã¯ãå Žåã«ãã£ãŠã¯ãåçã®èµ·æºãåœããç¹å®ã®é¡ã®ç¹åŸŽãããåŸãªãã»ã©åäžã«é 眮ããŸãã åºå ž: https://arxiv.org/ftp/arxiv/papers/2210/2210.06587.pdf
ãã XNUMX ã€ã®æçšãªæ¢ç¥ã®å åã¯ãStyleGAN ãå¿ èŠã«å¿ããŠè€æ°ã®é¡ãã¬ã³ããªã³ã°ã§ããªãããšãé »ç¹ã«ããããš (äžã®æåã®ç»å)ãã¢ã¯ã»ãµãªãŒèª¿æŽã®æèœã®æ¬ åŠ (äžã®äžå€®ã®ç»å)ãããã³å³èã®éå§ãšããŠãã¢ã©ã€ã³ã䜿çšããåŸåãããããšã§ããåžœåïŒäžã®XNUMXçªç®ã®ç»åïŒã
ç ç©¶è ãæ³šç®ããXNUMXçªç®ã®æ¹æ³ã¯ã åçãªãŒããŒã¬ã€ (ãã®äŸã¯æ¬¡ã®ãšããã§ãã XNUMXæã®èšäº ããã¯ãCombineZ ã·ãªãŒãºãªã©ã®åæãç»åãã¬ã³ãã£ã³ã°ããœãããŠã§ã¢ã䜿çšããŠãè€æ°ã®ç»åã XNUMX ã€ã®ç»åã«é£çµããå€ãã®å Žåãæ§é ã®æ ¹åºã«ããå ±éæ§ãã€ãŸãåæã®æœåšçãªå åãæããã«ããŸãã
æ°ããè«æã§ææ¡ãããŠããã¢ãŒããã¯ãã£ã¯æ¬¡ã®ãããªã¿ã€ãã«ã«ãªã£ãŠããŸã (ãããããã¹ãŠã® SEO ã¢ããã€ã¹ã«åããŠããŸã) ãã¬ãŒãã©ã³ããŒãåç §ãã Voight-Kampffãã¹ã ããã¯ãSF ã·ãªãŒãºã®æµå¯Ÿè ããåœç©ãã§ãããã©ãããæ±ºå®ããŸãã
ãã€ãã©ã€ã³ã¯ XNUMX ã€ã®ãã§ãŒãºã§æ§æãããŠãããæåã®ãã§ãŒãºã¯ PapersPlease ã¢ãã©ã€ã¶ãŒã§ãthispersondoesnotexist.com ã generated.photos ãªã©ã®æ¢ç¥ã® GAN-face Web ãµã€ãããåéããããŒã¿ãè©äŸ¡ã§ããŸãã
ã³ãŒãã®ã«ããããŠã³ ããŒãžã§ã³ã¯ GitHub (以äžãåç §) ã§æ€æ»ã§ããŸãããOpenCV ãš DLIB ã¯ãåéããããããªã¢ã«å ã®é¡ã®èŒªéãæããæ€åºããããã«äœ¿çšãããŸãã
XNUMX çªç®ã®ã¢ãžã¥ãŒã«ã¯ã ç§ãã¡ã®äž æ€åºåšã ãã®ã·ã¹ãã ã¯ãStyleGAN ã®é¡åºåã®æ°žç¶çãªæ©èœã§ãããåçå ã®èª¿æŽãããç®ã®äœçœ®ãæ€çŽ¢ããããã«èšèšãããŠãããäžã§è©³ãã説æãããBrady Bunchãã·ããªãªã«å žåçã«ç€ºãããŠããŸãã AmongUs ã¯ãæšæºã® 68 ã©ã³ãããŒã¯æ€åºåšãæèŒããŠããŸãã

Intelligent Behavior Understanding Group (IBUG) ã«ããé¡ã®ãã€ã³ãã®æ³šéããã®é¡ã®ã©ã³ãããŒã¯ ãããã ã³ãŒã㯠Blade Runner ããã±ãŒãžã§äœ¿çšãããŸãã
AmongUs ã¯ãPapersPlease ã®æ¢ç¥ã®ãBrady æã座æšã«åºã¥ãäºåãã¬ãŒãã³ã°ãããã©ã³ãããŒã¯ã«äŸåããŠãããStyleGAN ããŒã¹ã®é¡ç»åã®ã©ã€ãã® Web 察å¿ãµã³ãã«ã«å¯ŸããŠäœ¿çšããããšãç®çãšããŠããŸãã
èè ã«ããã°ããã¬ãŒãã©ã³ããŒã¯ãããã§æ±ããããªãã£ãŒããã§ã€ã¯æ€åºã®ããã®ç€Ÿå ãœãªã¥ãŒã·ã§ã³ãéçºãããªãœãŒã¹ãäžè¶³ããŠããäŒæ¥ãçµç¹ã察象ãšãããã©ã°ã¢ã³ããã¬ã€ãœãªã¥ãŒã·ã§ã³ã§ããããæéã皌ãããã®å¿æ¥åŠçœ®ãã§ãããšãããããæä¹ çãªå¯Ÿçãã
å®éãããã»ã©äžå®å®ã§æ¥æé·ããŠããã»ãã¥ãªãã£åéã§ã¯ããªãŒããŒã¡ã€ãã®ãµãŒãã¹ã¯ããã»ã©å€ããããŸããã or ãªãœãŒã¹ãäžè¶³ããŠããäŒæ¥ãçŸåšå®å¿ããŠé Œãããæ¢æã®ã¯ã©ãŠã ãã³ã㌠ãœãªã¥ãŒã·ã§ã³ã
ãã¬ãŒãã©ã³ããŒã®ããã©ãŒãã³ã¹ã¯æªããã ã¡ã¬ããããã StyleGAN ãåœè£ ãã人ã ãããã¯åæ§ã®ã·ã¹ãã å šäœã§æ¯èŒçäžè¬çãªåé¡ã§ããããã®ãããªå Žåã«ã¯äžæçã«ãªããäžå¿ãšãªãåç §ç¹ãšããŠç®ã®èŒªéãè©äŸ¡ã§ããããšãæåŸ ãããŠããŸãã
ããã¬ãŒãã©ã³ããŒãã®çž®å°çãå ¬éãããŸããã ãªãªãŒã¹ GitHub ã§ãªãŒãã³ãœãŒã¹ã«ããŸãã ãªãŒãã³ãœãŒã¹ ãªããžããªã®æäœããšã« XNUMX æã®åçã§ã¯ãªããè€æ°ã®åçãåŠçã§ãããããæ©èœãè±å¯ãªç¬èªããŒãžã§ã³ãååšããŸãã èè ã¯ãæéã®èš±ãéããæçµçã«ã¯ GitHub ã®ããŒãžã§ã³ãåãæšæºã«ã¢ããã°ã¬ãŒãããäºå®ã§ãããšè¿°ã¹ãŠããŸãã 圌ã¯ãŸããStyleGAN ããã®æ¢ç¥ã®åŒ±ç¹ãçŸåšã®åŒ±ç¹ãè¶ ããŠé²åããå¯èœæ§ãé«ãããœãããŠã§ã¢ãåæ§ã«äžŠè¡ããŠéçºããå¿ èŠãããããšãèªããŠããŸãã
åœããåãé€ã
DE-FAKE ã¢ãŒããã¯ãã£ã¯ãããã¹ãããç»åãžã®æ¡æ£ã¢ãã«ã«ãã£ãŠçæãããç»åã®ããŠãããŒãµã«æ€åºããéæããã ãã§ãªãããããèå¥ããæ¹æ³ãæäŸããããšãç®çãšããŠããŸãã which æœå𿡿£ (LD) ã¢ãã«ãç»åãçæããŸããã

DE-FAKE ã®ãŠãããŒãµã«æ€åºãã¬ãŒã ã¯ãŒã¯ã¯ãããŒã«ã« ã€ã¡ãŒãžããã€ããªãã ãã¬ãŒã ã¯ãŒã¯ (ç·è²)ãããã³ãªãŒãã³ã¯ãŒã«ã ã€ã¡ãŒãž (éè²) ã«å¯Ÿå¿ããŸãã åºå ž: http://export.arxiv.org/pdf/2210.06998
æ£çŽã«èšããšãã¯ããŒãºããœãŒã¹ããªãŒãã³ãœãŒã¹ããåããã人æ°ã®ãã LD ã¢ãã«ã¯ãã¹ãŠé¡èãªç¹åŸŽãåããŠãããããçŸæç¹ã§ã¯ããã¯ããªãç°¡åãªäœæ¥ã§ãã
ããã«ãã»ãšãã©ã®äººã¯éŠãåãèœãšãããããªã©ã®å ±éã®åŒ±ç¹ãæã£ãŠããŸãã ä»»æã®æ¹æ³ Web ã¹ã¯ã¬ã€ãã³ã°ããã鿣æ¹åœ¢ã®ç»åã¯ãDALL-E 2ãStable DiffusionãMidJourney ãªã©ã®ã·ã¹ãã ãåããå€§èŠæš¡ãªããŒã¿ã»ããã«åã蟌ãŸããŸãã

æœå𿡿£ã¢ãã«ã¯ããã¹ãŠã®ã³ã³ãã¥ãŒã¿ãŒ ããžã§ã³ ã¢ãã«ãšåæ§ã«ãæ£æ¹åœ¢ãã©ãŒãããã®å ¥åãå¿ èŠãšããŸããããããLAION5B ããŒã¿ã»ããã匷åããéåç㪠Web ã¹ã¯ã¬ã€ãã³ã°ã«ã¯ãé¡ (ãŸãã¯ãã®ä»ã®ãã®) ãèªèããŠçŠç¹ãåãããæ©èœãªã©ã®ãèŽ æ²¢ãªè¿œå æ©èœãã¯æäŸããããç»åãããã£ã³ã°ãã代ããã«éåžžã«æ®é ·ã«åãæšãŠãããŸã (ãœãŒã¹å šäœãä¿æãããããšã«ãªããŸã)ãç»åã§ãããè§£å床ã¯äœããªããŸãïŒãäžåºŠèšç·Žããããšããããã®ãäœç©ãã¯æ£èŠåãããå®å®æ¡æ£ãªã©ã®æœå𿡿£ã·ã¹ãã ã®åºåã§éåžžã«é »ç¹ã«çºçããŸãã åºå ž: https://blog.novelai.net/novelai-improvements-on-stable-diffusion-e10d38db82ac ããã³å®å®ããæ¡æ£ã
DE-FAKE ã¯ãã¢ã«ãŽãªãºã ã«äŸåããªãããšãç®çãšããŠããããªãŒããšã³ã³ãŒããŒå¯Ÿãã£ãŒããã§ã€ã¯ç ç©¶è ã®é·å¹Žã®ç®æšã§ãããçŸæç¹ã§ã¯ LD ã·ã¹ãã ã«é¢ããŠã¯ããªãéæå¯èœãªç®æšã§ãã
ãã®ã¢ãŒããã¯ãã£ã§ã¯ãOpenAI ã® Contrastive Language-Image Pretraining (CLIP) ãã«ãã¢ãŒãã« ã©ã€ãã©ãª â å®å®æ¡æ£ã«äžå¯æ¬ ãªèŠçŽ ã§ãããæ¥éã«ç»å/ãããªåæã·ã¹ãã ã®æ°ããæ³¢ã®äžå¿ã«ãªãã€ã€ãããŸã â ãåœé ãLD ç»åããåã蟌ã¿ãæœåºãã芳å¯ããããã¿ãŒã³ãšã¯ã©ã¹ã«åºã¥ããŠåé¡åšããã¬ãŒãã³ã°ããæ¹æ³ãšããŠã
ããããã©ã㯠ããã¯ã¹ããªã·ããªãªã§ã¯ãçæããã»ã¹ã«é¢ããæ å ±ãä¿æãã PNG ãã£ã³ã¯ãããã»ã¹ã®ã¢ããããŒãããã®ä»ã®çç±ã§é·ãéåé€ãããŠãããç ç©¶è ã㯠Salesforce ã䜿çšããŸãã BLIPãã¬ãŒã ã¯ãŒã¯ (ãŸãã å°ãªããŠãäžã€ Stable Diffusion ã®é åžïŒã䜿çšããŠãç»åããç²ç®çã«ãããŒãªã³ã°ããŠãç»åãäœæããããã³ããã®ããããã»ãã³ãã£ãã¯æ§é ã調ã¹ãŸãã

ç ç©¶è ãã¯ãå®å®æ¡æ£ãæœå𿡿£ (ããèªäœãåå¥ã®è£œå)ãGLIDEãããã³ DALL-E 2 ã䜿çšããŠãMSCOCO ãš Flickr30k ãæŽ»çšãããã¬ãŒãã³ã°ããã³ãã¹ã ããŒã¿ã»ãããäœæããŸããã
éåžžãç§ãã¡ã¯æ°ãããã¬ãŒã ã¯ãŒã¯ãæ±ããç ç©¶è ã®å®éšçµæãããªãåºç¯å²ã«æ€èšããŸãã ãããå®ã®ãšãããDE-FAKE ã®èª¿æ»çµæã¯ãDE-FAKE ãéçšãããŠããäžå®å®ãªç°å¢ãã·ã¹ãã ã®å®å šæ§ãèæ ®ãããšããããžã§ã¯ãã®æåã®æå³ã®ããææšãšããŠã§ã¯ãªããåŸã®å埩ãåæ§ã®ãããžã§ã¯ãã®å°æ¥ã®ãã³ãããŒã¯ãšããŠåœ¹ç«ã€å¯èœæ§ãé«ãããã«æãããŸãããã®è«æã®è£å€ã§ç«¶åããŠããã®ã¯ãç»ååæã·ãŒã³ãæ¬åœã«åææ®µéã«ãã£ãé ãããã»ãŒ XNUMX 幎åã®ãã®ã§ãã

巊端㮠2019 ã€ã®ç»å: XNUMX 幎ã«èªçãããææŠçãªã以åã®ãã¬ãŒã ã¯ãŒã¯ã¯ããã¹ããã XNUMX ã€ã® LD ã·ã¹ãã å šäœã§ DE-FAKE (å³ç«¯ã® XNUMX ã€ã®ç»å) ã«å¯ŸããŠäºæ³éãããŸãããŸããããŸããã§ããã
ããŒã ã®çµæã¯ XNUMX ã€ã®çç±ããå§åçã«è¯å®çã§ããXNUMX ã€ã¯ããããæ¯èŒããããã®å è¡ç ç©¶ãã»ãšãã©ãªãããšã§ã (ãããŠãå ¬å¹³ãªæ¯èŒãæäŸãããã®ã¯ãŸã£ãããããŸãããã€ãŸããStable Diffusion ããªãŒãã³ãœãŒã¹ã«ãªãªãŒã¹ãããŠããããã XNUMX é±éãã«ããŒãããã®ã¯ãŸã£ãããããŸãã)ã
第 1.5 ã«ãäžã§è¿°ã¹ãããã«ãLD ç»ååæåéã¯ææ°é¢æ°çãªé床ã§çºå±ããŠããŸãããçŸåšã®è£œåã®åºåã³ã³ãã³ãã¯ãããèªèº«ã®æ§é ç (ãããŠéåžžã«äºæž¬å¯èœãª) æ¬ ç¹ãåå¿ã«ãã£ãŠäºå®äžãããèªèº«ã«éãããå ¥ããŠããŸãããããã®å€ãã¯ä¿®æ£ãããå¯èœæ§ãé«ãã Stable Diffusion ã®å Žåã¯ãå°ãªããšããããããã©ãŒãã³ã¹ã®é«ã 4 ãã§ãã¯ãã€ã³ã (ã€ãŸããã·ã¹ãã ã«é»åãäŸçµŠãã XNUMXGB ã®ãã¬ãŒãã³ã°æžã¿ã¢ãã«) ã®ãªãªãŒã¹ãŸã§ã«ã
åæã«ãStability ã¯ã·ã¹ãã ã® V2 ãš V3 ã«ã€ããŠæç¢ºãªããŒãããããããããšããã§ã«ç€ºããŠããŸãã éå» XNUMX ãæéã®ãã¥ãŒã¹ãè³ãããåºæ¥äºãèæ ®ãããšãOpenAI ãç»ååæåéã®ä»ã®ç«¶åäŒæ¥ã®äŒæ¥ã®æŽ»åã¯èžçºããå¯èœæ§ãé«ããããã¯ãç»ååæåéã§ãåæ§ã«æŽ»çºãªé²æ©ãæåŸ ã§ããããšãæå³ããŸããã¯ããŒãºããœãŒã¹ã®ç»ååæã¹ããŒã¹ã
åçã¯14幎2022æXNUMXæ¥ã