æ¬ã®ã¬ãã¥ãŒ
æžè©ïŒãã£ãŒãã©ãŒãã³ã°ã»ã¯ã©ãã·ã¥ã³ãŒã¹ïŒå®è·µçã»ãããžã§ã¯ãããŒã¹ã®äººå·¥ç¥èœå ¥é

ãã£ãŒãã©ãŒãã³ã°éäžè¬åº§ïŒå®è·µçãªãããžã§ã¯ãããŒã¹ã®äººå·¥ç¥èœå ¥é æ¬æžã¯ãç©çåŠãæ©æ¢°åŠç¿ãå¿çš AI ç ç©¶ã«ãããè±å¯ãªçµéšãæã€ç ç©¶è ããã³æè²è ã®ã°ã«ãŒãã§ãã Giovanni VolpeãBenjamin MidtvedtãJesús PinedaãHenrik Klein MobergãHarshith BachimanchiãJoana B. Pereiraãããã³ Carlo Manzo ã«ãã£ãŠå·çãããŠããŸãã
ãã®æ¬ã®å 容ã«è§Šããåã«ããŸãå人çãªåçœãããããšæããŸãããªããªãããã®æ¬ã®äœéšã圢äœã£ãã®ã¯ãã®åºæ¥äºã ã£ãããã§ããããã¯ç§ãåããŠèªãã æ¬ã§ãã ãã³ãã³ãã¬ã¹ãªãå ¥ç€Ÿåœåã¯ãæ¬åœã«äœãæåŸ ããã°ããã®ãå šãåãããŸããã§ãããAIã«ç¹åããå€§èŠæš¡ãªãŠã§ããµã€ããéå¶ããŠããã«ãããããããçŸä»£ã®AIã®åºæºãããããšãç§ã¯ããã°ã©ãã³ã°ãã²ã©ãäžæã ãšèªèŠããŠããŸããHTMLãCSSãJavaScriptãPHPã®åºç€ã¯ååã«çè§£ããŠããŸãããPythonã«é¢ããŠã¯ãç§ã®ã¹ãã«ã¯æããã«å¡åºžãªã¬ãã«ã§ãããããããã§ã¯éèŠã§ããããªããªãã Python ã¯æ¬æžå šäœã§äœ¿çšãããŠããèšèªã§ãããã»ãŒãã¹ãŠã®ãããžã§ã¯ãã§äžå¿çãªåœ¹å²ãæãããŠããŸãã
ãã©ã¹ãã¬ãŒã·ã§ã³ã®ä»£ããã«ãç§ãèŠã€ããã®ã¯ã¯ããã«äŸ¡å€ã®ãããã®ã§ãããæ¬æžã¯ãåçŽåããããã奥深ãããã€å§åçãããããããŠä»ã®AIé¢é£æžç±ã§ã¯ã»ãšãã©èŠãããªããããªå®è·µçãªå 容ã«ãªã£ãŠããŸããæ©æ¢°åŠç¿ã®æåãçšèªãã¯ãŒã¯ãããŒã«ç²ŸéããŠããããšãåæãšããŠããŸããããããã解説ãšå®è·µçãªæŒç¿ãçµã¿åãããç« ããšã«çå®ã«èªä¿¡ãæ·±ããŠããããã«äœãããŠããŸãã
é°å²æ°ã決ãã第äžå°è±¡
ãã®æ¬ã¯600ããŒãžãè¶ ãã倧ããªã¥ãŒã ã®æ¬ã§ããã®ã¹ããŒã¹ã广çã«æŽ»çšããŠããŸããç§ãããã«æ³šç®ããã®ã¯ãèè ãã³ãŒãããŒã¹å šäœã TensorFlow ããž ãã€ããŒã åçš¿ãæ¢ã«å®æããŠããåŸã«ããã®å€æŽãè¡ãããŸãããããã¯ãç¹ã«ãã®ãµã€ãºã®æ¬ãšããŠã¯ã決ããŠå°ããªå€æŽã§ã¯ãããŸãããããã¯éèŠãªããšã瀺ããŠããŸããããã¯ãæãæ¢ãŸã£ããããªæ¬ã§ãããã§ãã¯ããã¯ã¹ãåããããã«æžãããæ¬ã§ããããŸãããæ¬æžã¯ã仿¥ã®ãã£ãŒãã©ãŒãã³ã°ã®å®è·µæ¹æ³ã«å³ããåžžã«ææ°ã®æ å ±ãæäŸã§ããããã«èšèšãããæ¬ãªã®ã§ãã
åé ãããæ¬æžã¯å®è·µçã§å°ã«è¶³ã®ã€ããããŒã³ã§æžãããŠããŸããæ¬æžã¯æœè±¡çãªå²åŠãé£è§£ãªæ°åŠããå§ãŸãã®ã§ã¯ãªããã¢ãã«ã®æ§ç¯ãå®éšã®å®è¡ããããŠã³ãŒããäœãããããŠãªãè¡ã£ãŠããã®ããçè§£ããä»çµã¿ããå§ãŸããŸãããã®ã¢ãããŒãã¯ãç¹ã«æŠå¿µãé«ã¬ãã«ã§çè§£ããŠããŠãããããå®çšçãªå®è£ ã«èœãšã蟌ãã®ã«èŠåŽããŠããèªè ã«ãšã£ãŠã倧ããªéãããããããŸãã
æèšã§ã¯ãªãæ§ç¯ã«ããåŠç¿
Deep Learning Crash Course ã®æå€§ã®åŒ·ã¿ã®äžã€ã¯ããããžã§ã¯ãããŒã¹ã®æ§æã§ããããã¯ãäœæéãèªãã§åŸã§è©ŠããŠã¿ããšãã£ãé¡ã®æ¬ã§ã¯ãããŸãããåžžã«äœããæ§ç¯ããŠããããšã«ãªããŸããäž»èŠãªã³ã³ã»ããã¯ããããå ·äœçãªãããžã§ã¯ãã«çµã³ã€ããŠãããçè§£ãæ·±ãŸãã«ã€ããŠãããžã§ã¯ãã®è€éããå¢ããŠãããŸãã
ãŸãã¯æåã®ãã®ãæ§ç¯ããŠèšç·Žããããšããå§ããŸã ãã¥ãŒã©ã«ãããã¯ãŒã¯ PyTorchã䜿ã£ãŠãŒããããã¥ãŒã©ã«ãããã¯ãŒã¯ãæ§ç¯ããŸãããããã®æåã®ç« ã§ã¯ãå±€ãéã¿ã掻æ§å颿°ãæå€±é¢æ°ãæé©åãªã©ããã¥ãŒã©ã«ãããã¯ãŒã¯ã®æ ¹å¹¹ãšãªãèãæ¹ã解説ããŸããéèŠãªã®ã¯ããããã®èãæ¹ãæœè±¡çãªæ°åŠã®åé¡ãšããŠæ±ãããŠããªãããšã§ããå ·äœçãªåé¡ã解決ããããã®ããŒã«ãšããŠç޹ä»ãããŠãããããããã®èšèšäžã®éžæãçµæã«çŽæ¥ã©ã®ãããªåœ±é¿ãäžãããã確èªã§ããŸãã
æ¯æ¥PythonãæžããŠããããã§ã¯ãªãã®ã§ãèè ãã³ãŒããäžå¯§ã«è§£èª¬ããŠãããŠããç¹ãæ°ã«å ¥ããŸãããäœãèµ·ãã£ãŠããã®ããéæ³ã®ããã«çè§£ã§ãããšã¯æ±ºããŠæåŸ ãããŸããã説æã¯è©³çްã§ãããªããèªã¿ããããæ£ç¢ºãã ãã§ãªãçŽææ§ã«ãéç¹ã眮ãããŠããŸãã
ãã¿ãŒã³ãæããŠããŒã¿ãçè§£ãã
åºç€ãæŽããšãæ¬æžã¯ããŒã¿ã®åŸåããã¿ãŒã³ãæããæ®µéãžãšé²ã¿ãŸããããã§ã¯ãé«å¯åºŠãã¥ãŒã©ã«ãããã¯ãŒã¯ãããçŸå®çãªã¿ã¹ã¯ã«é©çšããŸãã ååž° åé¡åé¡ãã¢ãã«ãã©ã®ããã«äžè¬åãããã©ã®ããã«å€±æããã®ãããããŠãã®å€±æãã©ã®ããã«èšºæããã®ããåŠã³ãŸãã
ãã®ã»ã¯ã·ã§ã³ã§ã¯ãæ©æ¢°åŠç¿ã«ãããæãéèŠãªå®çšã¹ãã«ã®ããã€ããéãã«åŠã³ãŸããæ€èšŒã éé©åãã¢ã³ããŒãã£ããã£ã³ã°ããããŠããã©ãŒãã³ã¹è©äŸ¡ã¯ãçè«ã®è©°ã蟌ã¿ã§ã¯ãªããå®éšãéããŠèªç¶ã«å°å ¥ãããŸããåŠç¿æ²ç·ã®è§£éæ¹æ³ããã€ããŒãã©ã¡ãŒã¿ã®èª¿æŽæ¹æ³ããããŠåºåãç²ç®çã«ä¿¡é Œããã®ã§ã¯ãªããã¢ãã«ã®æåãæšè«ããæ¹æ³ãåŠã³ãŸãã
API ãŸãã¯ãããããæ§ç¯ãããããŒã«ãéããŠã®ã¿ AI ãšããåãããããšãããèªè ã«ãšã£ãŠã¯ããã®ã»ã¯ã·ã§ã³ã ãã§ããã®æ¬ãè³Œå ¥ãã䟡å€ããããŸãã
ãã¥ãŒã©ã«ãããã¯ãŒã¯ãçšããç»åã®æäœ
ãã®æ¬ã§æãè峿·±ãéšåã®äžã€ã¯ã ç»ååŠç ããã³ ã³ã³ãã¥ãŒã¿ããžã§ã³ã ããã¯ã©ãã§ã ããã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ ç»å ŽãããCNNãè¬ããããã®ãšããŠæ±ãã®ã§ã¯ãªã ãã©ãã¯ããã¯ã¹æ¬æžã§ã¯ãããããçè§£ããããæ§æèŠçŽ ã«åè§£ããŠããŸãã
ç³ã¿èŸŒã¿ãå®éã«äœãããã®ããããŒãªã³ã°å±€ããªãéèŠãªã®ãããããŠå±€ããŸããã§ç¹åŸŽæœåºãã©ã®ããã«æ©èœããã®ããåŠã³ãŸããããã«éèŠãªã®ã¯ããããã®èãæ¹ãå®éã®ç»åããŒã¿ã»ããã«é©çšããããšã§ãããããžã§ã¯ãã«ã¯ãç»ååé¡ãç»å倿ããããŠã¹ã¿ã€ã«å€æãDeepDreamã®ãããªãšãã§ã¯ããšãã£ãã¯ãªãšã€ãã£ããªèŠèŠçå®éšãå«ãŸããŸãã
ãã®ã»ã¯ã·ã§ã³ã¯ãæ¬æžã®å³è§£ã®æ©æµã倧ãã«åããŠããŸããã³ãŒãã«èŠèŠçãªèª¬æãæ·»ããããŠãããããã¢ãã«ãæ°åŠçã«è¡ã£ãŠããããšãšèŠèŠçã«çæããããã®ãçµã³ä»ãããããªã£ãŠããŸããèŠèŠçã«åŠç¿ãã人ã«ãšã£ãŠããã®ã»ã¯ã·ã§ã³ã¯ç¹ã«æºè¶³ã®ãããã®ãšãªãã§ãããã
å§çž®ããçæãž
æ¬æžã¯ãã®åŸã ãªãŒããšã³ã³ãŒã U-Netãå«ããšã³ã³ãŒãã»ãã³ãŒãã¢ãŒããã¯ãã£ããããã®ã¢ãã«ã¯ã次å åæžãæœåšè¡šçŸãæ§é åãããåºåçæãšãã£ãæŠå¿µãå°å ¥ããŠããŸããã¢ãã«ãè€éãªããŒã¿ã®ã³ã³ãã¯ããªè¡šçŸãåŠç¿ããæ¹æ³ããããŠãããã®è¡šçŸããã€ãºé€å»ãã»ã°ã¡ã³ããŒã·ã§ã³ãªã©ã®ã¿ã¹ã¯ã«ã©ã®ããã«äœ¿çšãããããåŠã³ãŸãã
ãããããç¯å²ã¯çæã¢ããªã³ã°ãžãšããã«åºãããŸããããã«ã¯ä»¥äžãå«ãŸããŸãã çæçãªæµå¯Ÿçãããã¯ãŒã¯ ããã³ æ¡æ£ã¢ãã«ã¯ãå€ãã®çŸä»£ã®çæAIã·ã¹ãã ã®åºç€ã圢æããŠããŸãããããã®ç« ã§ã¯ãçæã¢ãã«ã®åŠç¿ã«ããã課é¡ãé æ ®ããããšãªãåãäžããŠããŸããäžå®å®æ§ãåæã®åé¡ããããŠè©äŸ¡ã«ã€ããŠããã¹ãŠççŽã«è°è«ãããŠããŸãã
æ¬æžã§ç§ãæãè©äŸ¡ããã®ã¯ããããã®ã¢ãã«ãé床ã«å®£äŒããŠããªãããšã§ãããã®åãšéçã®äž¡æ¹ã瀺ããŠãããèªå€§å®£äŒã«æ¯é ãããã¡ãªåéã«ãããŠãããã¯æ°é®®ã§ãã
ã·ãŒã±ã³ã¹ãèšèªããããŠæ³šæ
æ¬æžã®ããäžã€ã®å€§ããªåŒ·ã¿ã¯ãã·ãŒã±ã³ã·ã£ã«ããŒã¿ãšèšèªã®æ±ãæ¹ã«ãããŸãããªã«ã¬ã³ããã¥ãŒã©ã«ãããã¯ãŒã¯ã¯å ¥éç·šãšããŠç޹ä»ãããŠãããèªè ãã¢ãã«ãæç³»åãé åºä»ããããå ¥åãã©ã®ããã«åŠçããããçè§£ããã®ã«åœ¹ç«ã¡ãŸãã
ããããæ¬æžã¯ã泚æã¡ã«ããºã ãšãã©ã³ã¹ãã©ãŒããŒã¢ãŒããã¯ãã£ãžãšå±éããŠãããŸãããããã®ç« ã¯ãèªè ãæ¢ã«ãã®åéã«ç²ŸéããŠããå¿ èŠã¯ãªããçŸä»£ã®èšèªã¢ãã«ãçè§£ããããã®ç¢ºåºããæŠå¿µçåºç€ãæäŸããŸãã解説ã¯ã泚æããªãéèŠãªã®ãããããåŠç¿ãã€ããã¯ã¹ãã©ã®ããã«å€åãããã®ãããããŠãããã©ã®ããã«ã¢ãã«ã®ã¹ã±ãŒã«åãå¯èœã«ããã®ãã«çŠç¹ãåœãŠãŠããŸãã
仿¥ã® AI ã·ã¹ãã ãã©ã®ããã«æ©èœããããããæ·±ãçè§£ããããšããŠããèªè ã«ãšã£ãŠããã®ã»ã¯ã·ã§ã³ã¯å€ãã®ç¹ãçµã³ä»ããŸãã
ã°ã©ããæææ±ºå®ããããŠã€ã³ã¿ã©ã¯ã·ã§ã³ããã®åŠç¿
åŸã®ç« ã§ã¯ ã°ã©ããã¥ãŒã©ã«ãããã¯ãŒã¯ã¯ãåã ã®å€ãšåæ§ã«æ¥ç¶ãéèŠãšãªããªã¬ãŒã·ã§ãã«ããŒã¿ãã¢ãã«åããããã«äœ¿çšãããŸããããã«ã¯ãç§åŠããŒã¿ããããã¯ãŒã¯ãæ§é åã·ââã¹ãã ã«é¢é£ããäŸãå«ãŸããŸãã
ãã®æ¬ã§ã¯ã¢ã¯ãã£ãã©ãŒãã³ã°ã玹ä»ãããŠããã æ·±å±€åŒ·ååŠç¿ã¢ãã«ã¯ç°å¢ãšçžäºäœçšããæææ±ºå®ãè¡ãããšã§åŠç¿ããŸãããããã®ã»ã¯ã·ã§ã³ã§ã¯ãéçãªããŒã¿ã»ããããåçãªã·ã¹ãã ãžãšèžã¿èŸŒã¿ããã£ãŒãããã¯ãšçµæã«åºã¥ããŠåŠç¿ãã©ã®ããã«é©å¿ãããã瀺ããŸãã
æ¬æžãèªã¿çµããé ã«ã¯ãèªè ã¯ãã£ãŒãã©ãŒãã³ã°ã·ã¹ãã ã®ã©ã€ããµã€ã¯ã«å šäœãçè§£ã§ããããã«ãªã£ãŠããã ããŒã¿ã®åãèŸŒã¿ æææ±ºå®æ©é¢ãžã
æ¬ãè¶ ããå®è·µçãªã¹ãã«
æ¬æžå šäœãéããŠãå®è·µçãªç¿æ £ã身ã«ã€ããããšã«éç¹ã眮ããŠããŸããå®éšã®æ§ç¯æ¹æ³ãã¢ãã«ã®ãããã°æ¹æ³ãçµæã®èŠèŠåæ¹æ³ããããŠããã©ãŒãã³ã¹ã«ã€ããŠæ¹å€çã«èããæ¹æ³ãåŠã³ãŸãããããã¯ããã¥ãŒããªã¢ã«ãçµããŠå®éã®ã¢ããªã±ãŒã·ã§ã³ã«åãçµãã éã«æãéèŠãšãªãã¹ãã«ã§ãã
ä»å±ã®ããŒãããã¯ãšããŒã¿ã»ããã«ãããå®éšããããžã§ã¯ãã®ä¿®æ£ãã¢ã€ãã¢ã®ãããªãæ¢æ±ã容æã«ãªããŸãããã®æè»æ§ã«ãããæ¬æžã¯äžåºŠèªãã ãã§ãªããé·æçãªåèè³æãšããŠã䟡å€ãããã®ãšãªã£ãŠããŸãã
ãã®æ¬ã®å¯Ÿè±¡è
æ¬æžã¯ããã£ãŒãã©ãŒãã³ã°ãå®éã«æ§ç¯ããªããçè§£ãããããã°ã©ããŒããšã³ãžãã¢ãç ç©¶è ããããŠæè¡ã«èå³ã®ãããããã§ãã·ã§ãã«ã«ãšã£ãŠçæ³çãªäžåã§ããå§ããã®ã«çç·ŽããPythonéçºè ã§ããå¿ èŠã¯ãªãã鲿©ããããã«é«åºŠãªæ°åŠã®ç¥èãå¿ èŠãããŸãããå¿ èŠãªã®ã¯ã奜å¥å¿ãšããããžã§ã¯ãããã£ãããšåãçµãææ¬²ã ãã§ãã
åèæžãšããŠãéåžžã«åœ¹ç«ã¡ãç§ãä»åŸã¯ãŸãã«ãã®ããã«æŽ»çšããŠããã€ããã§ãã ãã€ãã³ãŒãã£ã³ã° ã³ãŒãã®è¡ãé ã ãŸã§å®è¡ããã®ã§ã¯ãªããé«ã¬ãã«ã®ã·ã¹ãã èšèšã«çŠç¹ãåœãŠãŠãããããæ¬æžã¯æŠå¿µçè§£ãæ·±ããããã«å®æçã«èªã¿è¿ããã®ã«ãªããšæããŸãã解説ãå³è§£ããããŠã¢ãŒããã¯ãã£ã®å èš³ã«ãããã¢ãã«ã®æ§é ãç¹å®ã®ã¢ãããŒããéžæãããçç±ããããŠã©ã®ãããªãã¬ãŒããªããååšããããçè§£ããããšãã§ããŸãããã®æå³ã§ãæ¬æžã¯ã¹ããããã€ã¹ãããã®ã³ãŒã¹ãšããŠã ãã§ãªããå®éšããããã¿ã€ãã³ã°ããããã¯ããé«åºŠãªæšè«ãè¡ããªãããçŸä»£ã®AIã·ã¹ãã ãå éšã§äœãããŠããã®ããçè§£ãããèªè ã«ãšã£ãŠãé·æçãªããŒãããŒãšããŠãæåããŠããŸãã
æçµçãªèã
ãã£ãŒãã©ãŒãã³ã°éäžè¬åº§e æåŸ ãã¯ããã«è¶ ããå 容ã§ããããã£ãŒãã©ãŒãã³ã°ããã 解説ããã ãã§ãªãã身è¿ã§éæå¯èœãªãã®ã«æããããŠãããŸãããåè¬ãçµããé ã«ã¯ãPyTorchããŒã¹ã®ã¢ãã«ã®èªã¿æžããä¿®æ£ãèšè¿°ããåè¬éå§æããããã£ãšæ¥œã«ã§ããããã«ãªããŸããã
ãã®æ¬ã¯åªåã«èŠåã䟡å€ããããèªè ã®ç¥æ§ãå°éãã€ã€ãå°éç¥èãåæãšãããAIæè²ã«ãããŠç§ãçµéšããäžã§æãå®è·µçãªåŠç¿äœéšã®äžã€ãæäŸããŠããããAIã®èгå¯è ããAIã®æ§ç¯è ãžãšçå£ã«ç§»è¡ããããšèããŠããæ¹ã«ã¯ãæ¬æžã匷ããå§ãããã










