ãã¹ã·ãªã·
æ°åŠåãAIããŒã«ãã¹ã9ïŒ2025幎XNUMXæïŒ
Unite.AI ã¯å³æ Œãªç·šéåºæºãéµå®ããŠããŸãã åœç€Ÿãã¬ãã¥ãŒãã補åãžã®ãªã³ã¯ãã¯ãªãã¯ãããšãåœç€Ÿã¯å ±é ¬ãåãåãå ŽåããããŸãã ãã²ã芧ãã ãã ã¢ãã£ãªãšã€ãé瀺.

æè²ãç¹ã«æ°åŠãžã®åãçµã¿æ¹ã¯ãããæ°å¹Žã§å€§ããå€åããŸãããçåŸããŸããŸãè€éãªæ°åŠã®åé¡ã«çŽé¢ããäžãAI ãæŽ»çšããããŒã«ã¯ãåŠç¿ãåé¡è§£æ±ºãã¹ãã«éçºã®ããã®è²ŽéãªãªãœãŒã¹ãšããŠç»å ŽããŸããããããã®é©æ°çãªã¢ããªã±ãŒã·ã§ã³ã¯ãç¬æã®åé¡èªèããæ®µéçãªèª¬æãŸã§ãããããã¬ãã«ã®åŠç¿è ã®ããŒãºã«å¿ããæ©èœãæäŸããŸãã
ãã®èšäºã§ã¯ãæ°åŠæè²ã®ç¶æ³ãäžå€ãããåŠçãšæè²è ã課é¡ã«åãçµãåãäžãããæé«ã® AI æ°åŠããŒã«ãããã€ã玹ä»ããŸãã
1. Julius
Julius AI ã¯ãåŠçãå°éå®¶ãæ°åŠã®åé¡ãç°¡åã«è§£ããããã«èšèšãããæå ç«¯ã®æ°åŠãã¥ãŒã¿ãŒã§ããé«åºŠãªèšç®æ©èœã§ç¥ããã Julius ã¯ãäžçäžã§ 1.2 äžäººä»¥äžã®ãŠãŒã¶ãŒã®ä¿¡é ŒãåŸãŠããŸããJulius ã䜿çšãããšãåé¡ãã¹ãã£ã³ããã ãã§ã代æ°ã埮ç©åãäžè§æ³ãªã©ã®è€éãªæ°åŒãè§£ãããšãã§ããŸããJulius ã¯ããŠãŒã¶ãŒãåãœãªã¥ãŒã·ã§ã³ãå®å šã«çè§£ã§ããããã«è©³çްãªã¹ããããã€ã¹ãããã®èª¬æãæäŸããGPT-4oãMathwayãSymbolab ãªã©ã®äž»èŠç«¶å補åããã 31% æ£ç¢ºã§ãã
ãã®éç«ã£ãæ©èœã® 1 ã€ã¯ãæç« é¡ã倿ããŠè§£ãæ©èœã§ããããã«ãããå€é åŒã®å æ°åè§£ããäžçåŒã®è§£æ±ºãŸã§ãããŸããŸãªæ°åŠæŠå¿µãç°¡çŽ åãããŸããJulius AI ã¯æ¹çšåŒãç¬æã«ããããã§ãããããè€éãªåé¡ãèŠèŠåããããã®è²ŽéãªããŒã«ãšãªããŸããã·ãŒã±ã³ã¹ãã·ãªãŒãºãæ±ã£ãŠããå Žåã§ããåŒãç°¡çŽ åããŠããå Žåã§ããæªç¥ã®å€æ°ãè§£ããŠããå Žåã§ããJulius ã¯ã·ãŒã ã¬ã¹ãªãšã¯ã¹ããªãšã³ã¹ãæäŸããäœæéãããããã©ã¹ãã¬ãŒã·ã§ã³ããããæ°åã§æç¢ºã«ããŸãã
Julius ã¯ãåçã䜿ã£ãæ°åŠæ©èœãšçŽæç㪠AI 説æã§åºãè©äŸ¡ãããŠãããåŠçãæ°åŠæå¥œå®¶ã宿é¡ã®èª²é¡ãç°¡åã«å æããã®ã«åœ¹ç«ã¡ãŸããæ¯é¡ã®ãªã粟床ãšãŠãŒã¶ãŒãã¬ã³ããªãŒãªãœãªã¥ãŒã·ã§ã³ãæäŸãããããæ¥œã ãšæ°åŠããã¹ã¿ãŒããã人ã«ãšã£ãŠã¯å¿ é ã®ããŒã«ã§ãã
Julius ã®äž»ãªæ©èœ:
- 1.2 äžäººä»¥äžã®ãŠãŒã¶ãŒããä¿¡é ŒãããŠããŸãJulius AI ã¯ãå¹ åºãæ°åŠã®åé¡ãç°¡åã«è§£ããããã«èšèšãããé«åºŠãªæ°åŠãã¥ãŒã¿ãŒã§ãã
- æ£ç¢ºã§ä¿¡é Œæ§ã®é«ããœãªã¥ãŒã·ã§ã³ãæäŸããŸã代æ°ãã埮ç©åãŸã§ãããŸããŸãªæ°åŠã®ãããã¯ã«ããã£ãŠæ£ç¢ºæ§ãä¿èšŒããŸãã
- æ°åŠã®åé¡ãã¹ãã£ã³ããŠããã«è§£ã代æ°ã埮ç©åããæç« é¡ãŸã§ãããããåé¡ã段éçã«è§£èª¬ããŸãã
- æç« åé¡ã倿ããŠè§£ã ãŸããæ¹çšåŒã®ãããããåŒã®ç°¡ç¥åãäžçåŒã®åŠçããµããŒãããŠããŸãã
- åçèšç®æ©èœã奜è©Julius ã¯ãç¬æã«æ£ç¢ºãªè§£æ±ºçãæäŸããããšã§ãäœæéãããã宿é¡ã®ã€ã©ã€ã©ãæ°åéã®æå¿«ãã«å€ããŸãã
2. ãŽãŒããã¹
GauthMathã¯ãAIãæŽ»çšããæ°åŠã®åé¡è§£æ±ºããŒã«ã§ããå¹ åºãæ°åŠã®ãããã¯ã«ãããŠããªã¢ã«ã¿ã€ã ã§æ®µéçãªè§£çãæäŸããããšã§ãçåŸãæ¯æŽããŸãããã®ã¢ããªã§ã¯ãæ°åŠã®åé¡ãåçã«æ®ãã ãã§ãAIãŸãã¯ã©ã€ããã¥ãŒã¿ãŒããå³åº§ã«ãµããŒããåããããšãã§ããŸããGauthMathã¯ãã€ã³ããªãžã§ã³ããªã¢ã«ãŽãªãºã ãšäººéã®å°éç¥èãçµã¿åãããç¹ã«é£ãã宿é¡ã«å¯ŸããŠå æ¬çãªåŠç¿ãµããŒããæäŸããŸãã
ãã®ãã©ãããã©ãŒã ã¯ãåºæ¬çãªç®æ°ããè€éãªåŸ®ç©åãŸã§ãããããã¬ãã«ã®æ°åŠåŠç¿è ã«è¿ éãã€æ£ç¢ºãªè§£çãæäŸãããã©ãããã©ãŒã ã§ããGauthMathã®AIãšãã¥ãŒã¿ãŒã«ããæå°ãçµã¿åããããã€ããªããã¢ãããŒãã«ãããçåŸã¯è§£çãåŸãã ââãã§ãªãããã®èåŸã«ããæŠå¿µãçè§£ããããšãã§ããããã«ãªããŸãã
GauthMathã®äž»ãªæ©èœ:
- ã€ã³ã¹ã¿ã³ãåçããŒã¹ã®ãœãªã¥ãŒã·ã§ã³: çåŸã¯æ°åŠã®åé¡ãåçã«æ®ã£ãŠãæ°ç§ä»¥å ã«è©³çްãªã¹ãããããšã®è§£çãåãåãããšãã§ããŸãã
- AIãšãã¥ãŒã¿ãŒã®ãã€ããªãããµããŒã: AI ã«ãã説æãšã©ã€ãè¬åž«ãžã®ã¢ã¯ã»ã¹ãçµã¿åãããããšã§ãããè€éãªãã«ããããŒãœãã©ã€ãºããããã«ããæäŸã§ããŸãã
- å¹ åºããããã¯ãã«ããŒ: ç®è¡ã代æ°ã幟äœåŠãäžè§æ³ã埮ç©åãçµ±èšãæç« é¡ããµããŒãããŸãã
- 24æé7æ¥ã®ã©ã€ãæå°ïŒ åŠçã¯ã远å ã®ãµããŒããå¿ èŠãªå Žåã¯ãã€ã§ãæ¬ç©ã®æ°åŠã®å°éå®¶ã«åãåãããããšãã§ããŸãã
- 詳现ãªã¹ããããã€ã¹ãããã®èª¬æ: åãœãªã¥ãŒã·ã§ã³ã管çå¯èœãªã¹ãããã«åå²ããããšã§ãæ·±ãçè§£ãä¿é²ããŸãã
- ç¡æã®ã³ã¢ãµãŒãã¹: ã»ãšãã©ã®çš®é¡ã®æ°åŠã®åé¡ã«å¯Ÿããç¡æã®è§£çãæäŸããé«åºŠãªãµããŒããå¿ èŠãªå Žåã¯ãªãã·ã§ã³ã§ææã®å奿å°ãåããããŸãã
3. ãœã¯ã©ãã¹
Socratic by Google ã¯ã髿 ¡çã倧åŠçã®åŠç¿ãæ¯æŽããããã«èšèšãããç¡æã®ã¢ãã€ã« ã¢ããªã§ããé¢é£ããæè²ãªãœãŒã¹ã質åã«å¯Ÿãã詳现ãªèª¬æãæäŸããŸããGoogle ã®äººå·¥ç¥èœãæèŒãã Socratic ã§ã¯ãé³å£°ãããã¹ããç»åã䜿çšããŠçåŸã質åã§ããçåŸã®ããŒãºã«åãããé«å質ã®åŠç¿ææãæäŸãããŸãã
2018 幎㫠Google ã«è²·åããã Socratic ã¯ãæ°åŠãç§åŠãæåŠã瀟äŒåŠãªã©ãå¹ åºãç§ç®ã§è¿ éãã€ä¿¡é Œã§ããåçãšè©³çްãªèª¬æãæ±ããåŠçã«ãšã£ãŠãé Œãã«ãªãåŠç¿ããŒã«ãšãªã£ãŠããŸãããã®ã¢ããªã¯ãé«åºŠãª AI ã¢ã«ãŽãªãºã ãæŽ»çšããŠãå質åã®èåŸã«ããäžæ žæŠå¿µãèå¥ããWeb äžã®ä¿¡é Œã§ãããœãŒã¹ããæãé¢é£æ§ã®é«ãã³ã³ãã³ãããã¥ã¬ãŒãããŸãã
Socratic by Google ã®äž»ãªæ©èœ:
- å€åœ©ãªå ¥åæ¹æ³: çåŸã¯ãå ¥åãããã話ããããææžãã®ã¡ã¢ãæç§æžã®ããŒãžãåçã«æ®ã£ããããŠè³ªåããããšãã§ããŸãã
- AIãæŽ»çšããã³ã³ãã³ããã¥ã¬ãŒã·ã§ã³: Socratic ã®ã¢ã«ãŽãªãºã ã¯å質åãåæããŠäž»èŠãªæŠå¿µãèå¥ããæãé¢é£æ§ã®é«ã説æããããªãã¹ããããã€ã¹ãããã®è§£æ±ºçãèŠã€ããŸãã
- å æ¬çãªäž»é¡ã®ã«ããŒç¯å²: ãã®ã¢ããªã¯ã代æ°ã幟äœåŠãçç©åŠãååŠãç©çåŠãæŽå²ãæåŠãªã©ãå¹ åºãåŠè¡ç§ç®ããµããŒãããŠããŸãã
- å°éå®¶ãäœæããåŠç¿ã¬ã€ã: Socratic ã¯æè²è ãšææºããŠãåç§ç®ã«ã€ããŠèŠèŠçã«é åçãªèª¬æãšåŠç¿ã¬ã€ããæäŸããã³ã³ãã³ããæè²åºæºã«æºæ ããŠããããšãä¿èšŒããŸãã
- ããŒãœãã©ã€ãºãããåŠç¿äœéš: ãœã¯ã©ãã£ãã¯ã¯ãåçåŸã®è³ªåãšåŠç¿ã¹ã¿ã€ã«ãçè§£ããçåŸã®å人ã«åãããã³ã³ãã³ãã®æšå¥šãã«ã¹ã¿ãã€ãºããŸãã
4. ãã©ããã¹
Photomath ã¯ãé«åºŠãªã³ã³ãã¥ãŒã¿ãŒ ããžã§ã³ãšäººå·¥ç¥èœã䜿çšããŠæ°åŠã®åé¡ãå³åº§ã«è§£æ±ºãã人æ°ã®ã¢ãã€ã« ã¢ããªã§ããã¹ããŒããã©ã³ã®ã«ã¡ã©ãæ°åŒã«åããã ãã§ãPhotomath ããããèªèããŠè§£æ±ºãããŠãŒã¶ãŒãåé¡è§£æ±ºã®ããã»ã¹ãçè§£ã§ããããã«ã¹ããã ã〠ã¹ãããã®èª¬æãæäŸããŸãããã®ã¢ããªã¯ãåºæ¬çãªç®è¡ããé«åºŠãªåŸ®ç©åãŸã§ãå¹ åºãæ°åŠã®ãããã¯ãã«ããŒããŠãããããããã¬ãã«ã®åŠçã«ãšã£ãŠè²ŽéãªããŒã«ãšãªã£ãŠããŸãã
Photomath ã®å€§ããªåŒ·ã¿ã® 100,000 ã€ã¯ãå°å·ãããããã¹ãã ãã§ãªãææžãã®æ°åŒãèªèã§ããããšã§ãããã®æ©èœã¯ãææžãã®æ°åŒã® 98 æä»¥äžã®ç»åã§ãã¬ãŒãã³ã°ããããã¥ãŒã©ã« ãããã¯ãŒã¯ ã¢ãã«ã䜿çšããé©ç°ç㪠XNUMX% ã®ç²ŸåºŠãéæããŠããŸãã
Photomath ã®äž»ãªæ©èœ:
- 峿ã®åé¡è§£æ±º: ã«ã¡ã©ãæ°åŠã®åé¡ã«åããã ãã§ãPhotomath ããªã¢ã«ã¿ã€ã ã§è§£çãæäŸããçãã«ãã©ãçããŸã§ã®æé ãé ã远ã£ãŠèª¬æããŸãã
- ææžãèªè: Photomath ã¯ãé«åºŠãªãã¥ãŒã©ã« ãããã¯ãŒã¯ ã¢ãã«ã«ãããææžãã®æ°åŠã®åé¡ãé«ã粟床ã§èªèããŠè§£ãããšãã§ããŸãã
- ã¹ããããã€ã¹ãããã®èª¬æ: ãã®ã¢ããªã¯ãååé¡ãæç¢ºã§ããããããã¹ãããã«åè§£ãããŠãŒã¶ãŒãåé¡è§£æ±ºã®ããã»ã¹ãçè§£ããèªåã®ããŒã¹ã§åŠç¿ã§ããããã«ããŸãã
- ã€ã³ã¿ã©ã¯ãã£ã ã°ã©ã: Photomath ã¯ãåé¡ãèŠèŠåããã®ã«åœ¹ç«ã€ã€ã³ã¿ã©ã¯ãã£ããªã°ã©ããçæãããŠãŒã¶ãŒãã«ãŒããæå°å€ãæå€§å€ãªã©ã®äž»èŠãªæ©èœã調ã¹ãããšãã§ããããã«ããŸãã
- å¹ åºããããã¯: ãã®ã¢ããªã¯ã代æ°ãäžè§æ³ãçµ±èšãªã©ãåºæ¬çãªç®è¡ããé«åºŠãªåŸ®ç©åãŸã§ãããããã¬ãã«ã®åŠçã«é©ããæ°åŠã®ãããã¯ãã«ããŒããŠããŸãã
5. ããã¹AI
Mathos AIã¯ãé«åºŠãªAIãæèŒããæ°åŠã¢ã·ã¹ã¿ã³ãå Œå人æå°ããŒã«ã§ã宿é¡ã詊éšå¯ŸçãæŠå¿µã®ç¿åŸãªã©ãçåŸã®åŠç¿ããµããŒãããŸããé«ç²ŸåºŠãªè§£çãšæè»ãªå ¥åæ¹æ³ãçµã¿åãããããšã§ã代æ°ã幟äœåŠã埮ç©åãçµ±èšåŠãç©çåŠãååŠãªã©ãå¹ åºãç§ç®ã«ãããŠããªã¢ã«ã¿ã€ã ã§æ®µéçãªè§£èª¬ãæäŸããŸãã
ãã®ãã©ãããã©ãŒã ã¯ãããŒããŒãå ¥åãææžãã®æ°åŒãé³å£°ãã¹ãã£ã³ããææžãããã«ã¯PDFã®ã¢ããããŒãã«ã察å¿ããŠãããçŸåšå ¥æå¯èœãªæãæ±çšæ§ã®é«ãæ°åŠåŠç¿ããŒã«ã®äžã€ãšãªã£ãŠããŸããMathos AIã¯ããã³ããŒãã³æå°ãã·ãã¥ã¬ãŒãããçââåŸã®åŠç¿ããŒã¹ãåŠç¿ã¹ã¿ã€ã«ã«åãããŠèª¿æŽããããšã§ãæçµçãªçãã ãã§ãªããæ·±ãæŠå¿µçè§£ãä¿ããšããç¹ã§éç«ã£ãŠããŸãã
Mathos AIã®äž»ãªæ©èœ:
- ãã«ãã¢ãŒãã«å ¥åãµããŒã: åŠçã¯ããã¹ããé³å£°ãåçãæç»ããŸãã¯å®å šãª PDF ã®ã¢ããããŒããéããŠåé¡ãå ¥åã§ãããããã¢ããªã¯æè»ã§ãŠãŒã¶ãŒãã¬ã³ããªãŒã«ãªããŸãã
- ã¹ãããããšã®è©³çް: Mathos AI ã¯ãçåŸãçãã ãã§ãªããåé¡ã解決ããæ¹æ³ãçè§£ã§ããããã«ã詳现ã§ãããããã説æãæäŸããŸãã
- å¹ åºãäž»é¡: 代æ°ã埮ç©åã幟äœåŠãçµ±èšãç©çåŠãååŠãªã©ãåºæ¬çãªç®è¡ãã STEM ã®é«åºŠãªãããã¯ãŸã§ãã«ããŒããŸãã
- ã°ã©ãäœææ©èœãšèšç®æ©ãå èµ: ã°ã©ãé»åãšãç©åã埮åãæ¥µéãäºæ¬¡æ¹çšåŒãªã©ãè§£ãããã®å°çšããŒã«ãå«ãŸããŠããŸãã
- AIæå°çµéš: ããŒãœãã©ã€ãºãããããŒã¹ã§ã€ã³ã¿ã©ã¯ãã£ããªåŠç¿äœéšãæäŸããç°¡åãªå®¿é¡ã®ãµããŒããšããæ·±ãåŠç¿ã»ãã·ã§ã³ã®äž¡æ¹ã«æé©ã§ãã
- ã°ããŒãã«ãªãªãŒããšä¿¡é Œæ§: äžçäžã§ 2 äžäººä»¥äžã®ãŠãŒã¶ãŒããä¿¡é ŒãããŠããããã®æçæ§ãæ£ç¢ºæ§ã䜿ããããã§é«ãè©äŸ¡ãåŸãŠããŸãã
Mathos AIãã芧ãã ããâ
6. ãã¹ãŠã§ã€
Mathway ã¯ãåºæ¬çãªç®æ°ããé«åºŠãªåŸ®ç©åãŸã§ãå¹ åºãæ°åŠã®åé¡ã«å³åº§ã«è§£çãæäŸãã匷åãªæ°åŠåé¡è§£æ±ºã¢ããªã§ãã倧ææè²ãã¯ãããžãŒäŒæ¥ Chegg ã«ãã£ãŠéçºããã Mathway ã¯ãæ°åŠã®åé¡ã«å¯Ÿããè¿ éãã€ç¢ºå®ãªè§£çãæ±ããåŠçã«ãšã£ãŠé Œãã«ãªããªãœãŒã¹ãšãªã£ãŠããŸãã.
Mathway ã¯ãå ¥åãããæ¹çšåŒãææžãã®è¡šçŸãããã«ã¯æç§æžã®ããŒãžã®åçãªã©ãããŸããŸãªåœ¢åŒã§å ¥åãããåé¡ãèªèããŠè§£æ±ºã§ããŸããã¢ããªã®é«åºŠãª AI ã¢ã«ãŽãªãºã ã¯å ¥åãåæããæ£ç¢ºãªã¹ããããã€ã¹ãããã®ãœãªã¥ãŒã·ã§ã³ãæäŸãããããçåŸã¯åé¡è§£æ±ºã®ããã»ã¹ãç°¡åã«çè§£ããŠåŠç¿ã§ããŸãããã®æ±çšæ§ã«ãããè€éãªæ¹çšåŒã®å ¥åã«èŠåŽããããææžãã®ã¡ã¢ã§äœæ¥ããããšã奜ãçåŸã«ãšã£ãŠãMathway ã¯æ¬ ãããªãããŒã«ãšãªã£ãŠããŸãã
Mathway ã®äž»ãªæ©èœ:
- å æ¬çãªæ°åŠã®ã«ããŒç¯å²: Mathway ã¯ãåºç€æ°åŠãåç代æ°ã代æ°ã幟äœåŠãäžè§æ³ãåç埮ç©åã埮ç©åãçµ±èšåŠãªã©ãå¹ åºãæ°åŠç§ç®ããµããŒãããŠããŸãã
- ã¹ããããã€ã¹ãããã®èª¬æ: ãã®ã¢ããªã¯ãçåŸãåé¡è§£æ±ºã®ããã»ã¹ãçè§£ããåŠç¿ã匷åããã®ã«åœ¹ç«ã€è©³çްãªã¹ããããã€ã¹ãããã®ãœãªã¥ãŒã·ã§ã³ãæäŸããŸãã
- è€æ°ã®å ¥åæ¹æ³: çåŸã¯ãå ¥åãææžãããŸãã¯æç§æžãã¯ãŒã¯ã·ãŒãã®åçãæ®ãã ãã§åé¡ãå ¥åã§ããŸãã
- ã°ã©ãäœææ©èœ: Mathway ã«ã¯ããŠãŒã¶ãŒã颿°ãããããããã³åæã§ãã匷åãªã°ã©ãèšç®æ©ãå«ãŸããŠãããé«åºŠãªæ°åŠã³ãŒã¹ã«åœ¹ç«ã€ããŒã«ãšãªã£ãŠããŸãã
- ã«ã¹ã¿ãã€ãºå¯èœãªãšã¯ã¹ããªãšã³ã¹: ãŠãŒã¶ãŒã¯å¥œã¿ã®è§£æ±ºæ¹æ³ãéžæããåŠç¿ã¹ã¿ã€ã«ãããŒãºã«åãããŠã¢ããªã®èšå®ãã«ã¹ã¿ãã€ãºã§ããŸãã
7. ã·ã³ãã©ã
Symbolab ã¯ã人工ç¥èœã掻çšããŠå¹ åºãæ°åŠã®åé¡ã«ã¹ããããã€ã¹ãããã®è§£çãæäŸããé«åºŠãªæ°åŠæè²ãã©ãããã©ãŒã ã§ããã€ã¹ã©ãšã«ã®ã¹ã¿ãŒãã¢ããäŒæ¥ EqsQuest Ltd. ã«ãã£ãŠéçºããã2011 幎ã«ãªãªãŒã¹ããã Symbolab ã¯ãè€éãªæ°åŠã®æŠå¿µãçè§£ããåé¡è§£æ±ºèœåãåäžããããåŠçã«ãšã£ãŠé Œãã«ãªããªãœãŒã¹ãšãªã£ãŠããŸãã
Symbolab ã¯ãåç代æ°ã幟äœåŠãã埮ç©åãäžè§æ³ãªã©ã«è³ããŸã§ãæ°åŠã®ç§ç®ãå æ¬çã«ã«ããŒããŠããŸãããã®ãã©ãããã©ãŒã ã® AI ã¢ã«ãŽãªãºã ã¯ãå ¥åãããæ¹çšåŒãææžãã®è¡šçŸãããã«ã¯æç§æžã®ããŒãžã®åçãªã©ãããŸããŸãªåœ¢åŒã§å ¥åãããåé¡ãè§£éããŠè§£æ±ºã§ããŸãããã®æ±çšæ§ã«ãããSymbolab ã¯ããŸããŸãªåŠç¿ã¹ã¿ã€ã«ã奜ã¿ãæã€åŠçã«å©çšã§ããããã«ãªããŸãã
Symbolab ã®äž»ãªæ©èœ:
- ã¹ããããã€ã¹ãããã®è§£æ±ºç: Symbolab ã¯ãååé¡ã«å¯ŸããŠè©³çްãªã¹ããããã€ã¹ãããã®èª¬æãæäŸããçåŸãåé¡è§£æ±ºã®ããã»ã¹ãçè§£ããåŠç¿ã匷åããã®ã«åœ¹ç«ã¡ãŸãã
- ææžãèªè: ãã®ãã©ãããã©ãŒã ã®é«åºŠãª AI ã¯ãææžãã®æ°åŠã®åé¡ãé«ã粟床ã§èªèããŠè§£ãããšãã§ãããããçåŸã¯ææžãã®å®¿é¡ãã¡ã¢ã®äœæãç°¡åã«æ¯æŽããŠããããŸãã
- å æ¬çãªäž»é¡ã®ã«ããŒç¯å²: Symbolab ã¯ã代æ°ã幟äœåŠãäžè§æ³ã埮ç©åãçµ±èšãªã©ãå¹ åºãæ°åŠã®ãããã¯ããµããŒãããŠããŸãã
- ã€ã³ã¿ã©ã¯ãã£ããªã°ã©ãäœæ: ãã®ãã©ãããã©ãŒã ã¯ããŠãŒã¶ãŒã颿°ãããããããã³åæã§ãã匷åãªã°ã©ãèšç®æ©ãæäŸããŠãããè€éãªæ°åŠçæŠå¿µãèŠèŠåããããã®è²ŽéãªããŒã«ãšãªã£ãŠããŸãã
- ç·Žç¿ãšã¯ã€ãº: ææãµãã¹ã¯ãªãã·ã§ã³ãå©çšãããšãçåŸã¯ããŒãœãã©ã€ãºãããç·Žç¿åé¡ãã¯ã€ãºã«ã¢ã¯ã»ã¹ããŠãã¹ãã«ã磚ããé²æç¶æ³ã远跡ããããšãã§ããŸãã
8. GeoGebra
GeoGebra ã¯ãå°åŠæ ¡ãã倧åŠã¬ãã«ãŸã§ã®æ°åŠãšç§åŠã®åŠç¿ãšæå°ã®ããã®ã€ã³ã¿ã©ã¯ãã£ããªæ°åŠãœãããŠã§ã¢ ã¹ã€ãŒãã§ãã2001 幎㫠Markus Hohenwarter ãã¶ã«ããã«ã¯å€§åŠã®ä¿®å£«è«æã®äžç°ãšããŠéçºãã GeoGebra ã¯ããã€ãããã¯æ°åŠãœãããŠã§ã¢ã®å€§æãããã€ããŒã«æé·ããäžçäžã® STEM æè²ãšæè²ããã³åŠç¿ã®é©æ°ããµããŒãããŠããŸãã
GeoGebra ã¯ã幟äœåŠã代æ°ãã¹ãã¬ããã·ãŒããã°ã©ãäœæãçµ±èšã埮ç©åã 1 ã€ã®äœ¿ããããããã±ãŒãžã«ãŸãšãããã®ã§ããããŸããŸãªæ°åŠç衚çŸéã®åçãªé£æºã«ãããåŠçã¯èŠèŠçãã€ã€ã³ã¿ã©ã¯ãã£ããªæ¹æ³ã§æ°åŠã®æŠå¿µãæ¢æ±ããçè§£ããããšãã§ããŸããGeoGebra ã®ãŠãŒã¶ãŒãã¬ã³ããªãŒãªã€ã³ã¿ãŒãã§ã€ã¹ãšå¹ åºãããŒã«ã«ãããããããã¬ãã«ã®åŠçãå©çšã§ããŸãã
GeoGebra ã®äž»ãªæ©èœ:
- ãã€ãããã¯ãžãªã¡ããª: GeoGebra ã䜿çšãããšãç¹ããã¯ãã«ãç·åãç·ãå€è§åœ¢ãåéæ²ç·ã䜿çšããŠå¹ŸäœåŠçæ§æãäœæããã³æäœã§ããŸãããããã®æ§æã¯åçã«å€æŽã§ãããããåŠçã¯å¹ŸäœåŠçé¢ä¿ãç¹æ§ãæ¢çŽ¢ã§ããŸãã
- 代æ°å ¥å: æ¹çšåŒãšåº§æšã¯ãããŒããŒãã䜿çšããŠçŽæ¥å ¥åã§ããŸããGeoGebra ã®ä»£æ°ãã¥ãŒã«ã¯ãæ§ç¯ããããªããžã§ã¯ãã®èšå·è¡šçŸã衚瀺ãããããã幟äœåŠãšä»£æ°ã®ã€ãªããããããããããªããŸãã
- ã¹ãã¬ããã·ãŒãã®çµ±å: GeoGebra ã«ã¯ããŠãŒã¶ãŒãäœ¿ãæ £ããã€ã³ã¿ãŒãã§ãŒã¹ã䜿çšããŠæ°åŠã®æŠå¿µãæ¢çŽ¢ã§ããã¹ãã¬ããã·ãŒã ãã¥ãŒãå«ãŸããŠããŸããã¹ãã¬ããã·ãŒãã®ããŒã¿ã¯ãã°ã©ãã£ã㯠ãã¥ãŒã§ç°¡åã«ããããã§ããŸãã
- ã€ã³ã¿ã©ã¯ãã£ããªã°ã©ãäœæ: 颿°ã¯ä»£æ°çã«å®çŸ©ããã¹ã©ã€ããŒã䜿çšããŠåçã«å€æŽã§ããŸããåŠçã¯é¢æ°ã®åäœãšã°ã©ãäžã®ãã©ã¡ãŒã¿ã®åœ±é¿ã調ã¹ãããšãã§ããŸãã
- ã¹ã¯ãªãããšããŒã«GeoGebra ã¯ãã€ã³ã¿ã©ã¯ãã£ããªåŠç¿ææãã·ãã¥ã¬ãŒã·ã§ã³ãã¢ãã¡ãŒã·ã§ã³ãäœæããããã®ããŸããŸãªã¹ã¯ãªãã ãªãã·ã§ã³ãšããŒã«ãæäŸããŸãããããã¯ãGeoGebra Materials ãã©ãããã©ãŒã ãéããŠãªã³ã©ã€ã³ã§ç°¡åã«å ±æã§ããŸãã
9. ãã¹ãã
MathPapa ã¯ãåŠçã代æ°ã®æŠå¿µãåŠç¿ããå®è·µã§ããããã«èšèšããããªã³ã©ã€ã³ä»£æ°èšç®æ©ããã³ AI æè²ããŒã«ã§ãããã®ãã©ãããã©ãŒã ã¯ãããŸããŸãªä»£æ°ã®åé¡ã«å¯Ÿããã¹ããããã€ã¹ãããã®ãœãªã¥ãŒã·ã§ã³ãæäŸããããããã®ç§ç®ã®çè§£ãæ·±ãããåŠçã«ãšã£ãŠè²ŽéãªãªãœãŒã¹ãšãªããŸãã
MathPapa ã®å€§ããªåŒ·ã¿ã® 1 ã€ã¯ãç·åœ¢æ¹çšåŒãäºæ¬¡æ¹çšåŒãäžçåŒãã°ã©ãäœæãå æ°åè§£ãé£ç«æ¹çšåŒãªã©ã代æ°ã®ãããã¯ãå æ¬çã«ã«ããŒããŠããããšã§ãããã®ãã©ãããã©ãŒã ã® AI æèŒèšç®æ©ã¯ãå ¥åãããæ¹çšåŒãåŒãªã©ãããŸããŸãªåœ¢åŒã§å ¥åãããåé¡ãè§£ãããšãã§ããçåŸãåé¡è§£æ±ºã®ããã»ã¹ãçè§£ã§ããããã«ã詳现ãªã¹ããããã€ã¹ãããã®èª¬æãæäŸããŸãã
MathPapa ã®äž»ãªæ©èœ:
- ã¹ããããã€ã¹ãããã®ãœãªã¥ãŒã·ã§ã³MathPapa ã¯ãååé¡ã«å¯ŸããŠè©³çްãªã¹ããããã€ã¹ãããã®èª¬æãæäŸãã解決ããã»ã¹ãåè§£ããŠãåŠçãåºç€ãšãªãæŠå¿µãšãã¯ããã¯ãçè§£ã§ããããã«ããŸãã
- 代æ°åŠã®ã¬ãã¹ã³: ãã®ãã©ãããã©ãŒã ã¯ãäž»èŠãªãããã¯ãç¶²çŸ ããçåŸã®åŠç¿ããµããŒãããããã«æç¢ºãªèª¬æãšäŸãæäŸãã代æ°åŠã®ã¬ãã¹ã³ã®ã³ã¬ã¯ã·ã§ã³ãæäŸããŸãã
- ç·Žç¿åé¡: MathPapa ã«ã¯ãçåŸã代æ°åé¡ãè§£ããŠèªåã®çãã«å¯Ÿãããã£ãŒãããã¯ãå³åº§ã«åãåãããšã§ç解床ããã¹ãã§ããç·Žç¿ã»ã¯ã·ã§ã³ãå«ãŸããŠããŸãã
- ã¢ãã€ã«ã¢ããªïŒ Android ããã€ã¹ã§å©çšã§ãã MathPapa ã¢ãã€ã« ã¢ããªã䜿çšãããšãçåŸã¯å€åºå ã§ãèšç®æ©ãåŠç¿ãªãœãŒã¹ã«ã¢ã¯ã»ã¹ã§ããããããã€ã§ãã©ãã§ã代æ°ãç·Žç¿ãããåŠç¿ãããããã®ã«äŸ¿å©ã§ãã
- ç¡æããã³ãã¬ãã¢ã ãªãã·ã§ã³: MathPapa ã¯åºæ¬æ©èœãåããç¡æããŒãžã§ã³ãæäŸããŠããŸãããåŠçã¯ãã¬ãã¢ã ãµãã¹ã¯ãªãã·ã§ã³ã«ã¢ããã°ã¬ãŒãããŠãç¡å¶éã®ã¹ããããã€ã¹ãããã®ãœãªã¥ãŒã·ã§ã³ãåºåãªãã®äœéšãªã©ã®è¿œå ãªãœãŒã¹ã«ã¢ã¯ã»ã¹ã§ããŸãã
AIã§æ°åŠã®çè§£ãæ·±ãã
ã®çµ±å æè²ã«ãããAI AI ã¯ãåŠçãšæè²è ã®äž¡æ¹ã«æ°ããªå¯èœæ§ããããããŸããããããã®é«åºŠãªããŒã«ã¯ãæ°åŠã®åé¡ãè§£ãã ãã§ãªããåŸæ¥ã®æ¹æ³ã§ã¯å®çŸãé£ããæ¹æ³ã§æ°åŠã®æŠå¿µã説æããŸããAI æ°åŠããŒã«ã¯ãã¹ããããã€ã¹ãããã®ãœãªã¥ãŒã·ã§ã³ãæäŸããããšã§ãåŠçãè€éãªæ¹çšåŒãå ¬åŒã®èåŸã«ããåºæ¬åçãçè§£ããã®ã«åœ¹ç«ã¡ãŸãã
äžçŽæ°åŠã®åŠçã«ãšã£ãŠããããã® AI æèŒã¢ããªã±ãŒã·ã§ã³ã¯ãé£ãããããã¯ãæ¢æ±ããéçãæŒãåºããæ©äŒãæäŸããŸãã埮ç©åãç·åœ¢ä»£æ°ãçµ±èšã®ãããã«åãçµãå Žåã§ãããããã®ããŒã«ã¯å³æã®ãã£ãŒãããã¯ãšã¬ã€ãã³ã¹ãæäŸããåŠçãèªåã®ããŒã¹ã§åŠç¿ãé²ããããšãå¯èœã«ããŸããããã«ããããã®ãã©ãããã©ãŒã ã®å€ããæäŸããèŠèŠç衚çŸãšã€ã³ã¿ã©ã¯ãã£ããªèŠçŽ ã«ãããæœè±¡çãªæ°åŠã®æŠå¿µãããå ·äœçã§çè§£ãããããªããŸãã
ããŸããŸãª AI ããŒã¹ã®ã¢ããªã±ãŒã·ã§ã³ã人æ°ãéããŠããŸãããåŸæ¥ã®åŠç¿æ¹æ³ã«ä»£ãããã®ã§ã¯ãªããè£å®ãããã®ã§ããããšãèŠããŠããããšãéèŠã§ããæè²è ã¯ãããã® AI ããŒã«ã掻çšããŠãããé åçãªææ¥ãã©ã³ãäœæããåã ã®çåŸã®ããŒãºã«å¯Ÿå¿ããããŒãœãã©ã€ãºããããµããŒããæäŸã§ããŸãã人éã®å°éç¥èãš AI ã®æ©èœãçµã¿åãããããšã§ãçåŸãæ°åŠã®èª²é¡ãå æããå°æ¥ã«åããŠåŒ·åãªæ°åŠã¹ãã«ã身ã«ä»ããã®ã«åœ¹ç«ã€ããã广çã§å æ¬çãªæ°åŠåŠç¿ç°å¢ãäœæã§ããŸãã
ãã¯ãããžãŒãé²åãç¶ããã«ã€ããããæŽç·Žããã AI æèŒã®æè²ããŒã«ãç»å Žããæ°åŠã广çã«æããåŠã¶èœåãããã«åäžããããšãæåŸ ãããŸããæ°åŠæè²ã®æªæ¥ã¯æãããAI ã¯æ¬¡äžä»£ã®æ°åŠçæèè ãšåé¡è§£æ±ºè ãè²ãŠã匷åãªå³æ¹ãšããŠæ©èœããŸãã