Artificial Intelligence
LLM ã®ãã©ã㯠ããã¯ã¹åé¡: 課é¡ãšæ°ããªè§£æ±ºç

AI ã®ãµãã»ããã§ããæ©æ¢°åŠç¿ã«ã¯ãã¢ã«ãŽãªãºã ããã¬ãŒãã³ã° ããŒã¿ãçµæã®ã¢ãã«ãšãã 3 ã€ã®ã³ã³ããŒãã³ããå«ãŸããŸããæ¬è³ªçã«äžé£ã®æé ã§ããã¢ã«ãŽãªãºã ã¯ãå€§èŠæš¡ãªäŸ (ãã¬ãŒãã³ã° ããŒã¿) ã®ã»ãããããã¿ãŒã³ãèå¥ããæ¹æ³ãåŠç¿ããŸãããã®ãã¬ãŒãã³ã°ã®é倧æã¯æ©æ¢°åŠç¿ã¢ãã«ã§ããããšãã°ãç¬ã®ç»åã䜿ã£ãŠã¢ã«ãŽãªãºã ããã¬ãŒãã³ã°ãããšãç»åå ã®ç¬ãèå¥ã§ããã¢ãã«ãåŸãããŸãã
æ©æ¢°åŠç¿ã®ãã©ãã¯ããã¯ã¹
æ©æ¢°åŠç¿ã§ã¯ãã¢ã«ãŽãªãºã ãåŠç¿ããŒã¿ãã¢ãã«ãšãã3ã€ã®æ§æèŠçŽ ã®ãããããã©ãã¯ããã¯ã¹ã«ãªãå¯èœæ§ããããŸããã¢ã«ãŽãªãºã ã¯å€ãã®å Žåå ¬éãããŠããŸãããéçºè ã¯ç¥ç財ç£ãä¿è·ããããã«ãã¢ãã«ãåŠç¿ããŒã¿ãç§å¯ã«ããŠããããšãéžæããå ŽåããããŸãããã®äžæçãããAIã®æææ±ºå®ããã»ã¹ãçè§£ããããšãå°é£ã«ããŠããŸãã
AI ãã©ã㯠ããã¯ã¹ã¯ãå éšã®ä»çµã¿ãäžéæãŸãã¯ãŠãŒã¶ãŒã«ã¯èŠããªãã·ã¹ãã ã§ãã ãŠãŒã¶ãŒã¯ããŒã¿ãå ¥åããŠåºåãåãåãããšãã§ããŸãããåºåãçæããããžãã¯ãã³ãŒãã¯é ããããŸãŸã«ãªããŸãã ããã¯ãChatGPT ã DALL-E 3 ãªã©ã®é«åºŠãªçæã¢ãã«ãå«ããå€ãã® AI ã·ã¹ãã ã«å ±éã®ç¹æ§ã§ãã
GPT-4 ãªã©ã® LLM ã«ã¯é倧ãªèª²é¡ããããŸãããã®å éšåäœã¯ã»ãšãã©äžéæã§ãããããã©ã㯠ããã¯ã¹ãã«ãªã£ãŠããŸãã ãã®ãããªäžéææ§ã¯åãªãæè¡çãªããºã«ã§ã¯ãããŸããã ããã¯çŸå®äžçã®å®å šæ§ãšå«ççãªæžå¿µãåŒãèµ·ãããŸãã ããšãã°ããããã®ã·ã¹ãã ãã©ã®ããã«çµè«ã«éããããèå¥ã§ããªãå Žåãå»ç蚺æã財åè©äŸ¡ãªã©ã®éèŠãªåéã§ããããä¿¡é Œã§ããã§ãããã?
LLM ã®èŠæš¡ãšè€éã
ãããã®ã¢ãã«ã¯ã¹ã±ãŒã«ã倧ãããããããã«è€éã«ãªããŸãã ããšãã°ãGPT-3 ã«ã¯ 175 åã®ãã©ã¡ãŒã¿ããããæ°ããã¢ãã«ã«ã¯æ°å ãã®ãã©ã¡ãŒã¿ããããŸãã åãã©ã¡ãŒã¿ãŒã¯ãã¥ãŒã©ã« ãããã¯ãŒã¯å ã§è€éã«çžäºäœçšããåã ã®ã³ã³ããŒãã³ãã ãã調ã¹ãŠãäºæž¬ã§ããªãæ°ããªæ©èœã«è²¢ç®ããŸãã ãã®èŠæš¡ãšè€éãã«ãããå éšããžãã¯ãå®å šã«ææ¡ããããšã¯ã»ãŒäžå¯èœãšãªãããããã®ã¢ãã«ã®ãã€ã¢ã¹ãæãŸãããªãåäœã蚺æããéã«é害ãçããŸãã
ãã¬ãŒããªã: ã¹ã±ãŒã«ãšè§£éå¯èœæ§
LLM ã®èŠæš¡ãçž®å°ãããšãè§£éå¯èœæ§ãåäžããŸãããé«åºŠãªæ©èœãç ç²ã«ãªããŸãã ã¹ã±ãŒã«ã«ãã£ãŠãããå°ããªã¢ãã«ã§ã¯å®çŸã§ããªãåäœãå¯èœã«ãªããŸãã ããã¯ãèŠæš¡ãæ©èœãè§£éå¯èœæ§ã®éã«åºæã®ãã¬ãŒããªãããããããŸãã
LLM ãã©ãã¯ããã¯ã¹åé¡ã®åœ±é¿
1. æ¬ é¥ã®ããæææ±ºå®
GPT-3 ã BERT ãªã©ã® LLM ã®æææ±ºå®ããã»ã¹ã®äžéæãã¯ãæ€åºãããªããã€ã¢ã¹ããšã©ãŒã«ã€ãªããå¯èœæ§ããããŸãã ãã«ã¹ã±ã¢ãåäºåžæ³ãªã©ã決å®ãåºç¯å²ã«åœ±é¿ãåãŒãåéã§ã¯ãLLM ã®å«ççããã³è«ççå¥å šæ§ãç£æ»ã§ããªãããšã倧ããªæžå¿µäºé ãšãªã£ãŠããŸãã ããšãã°ãå€ãããŒã¿ãåã£ãããŒã¿ã«äŸåããå»ç蚺æ LLM ã¯ãæå®³ãªæšå¥šäºé ãäœæããå¯èœæ§ããããŸãã åæ§ã«ãæ¡çšããã»ã¹ã«ããã LLM ã¯ã誀ã£ãŠãžã§ã³ããŒãã€ã¢ã¹ãæ°žç¶ãããå¯èœæ§ããããŸãã ãããã£ãŠããã©ãã¯ããã¯ã¹ã®æ§è³ªã¯æ¬ é¥ãé ãã ãã§ãªããæ¬ é¥ãæ¡å€§ããå¯èœæ§ããããããéææ§ãé«ããããã®ç©æ¥µçãªã¢ãããŒããå¿ èŠã«ãªããŸãã
2. 倿§ãªç¶æ³ã«ãããé©å¿åã®å¶é
LLM ã®å éšåäœã«ã€ããŠã®æŽå¯ãäžè¶³ããŠãããããLLM ã®é©å¿æ§ãå¶éãããŠããŸãã ããšãã°ãLLM ãæ¡çšããå Žåãè©äŸ¡åºæºã調æŽã§ããªããããåŠæŽãããå®è·µçãªã¹ãã«ãéèŠãã圹å²ã®åè£è ãè©äŸ¡ããã®ã¯éå¹ççã«ãªãå¯èœæ§ããããŸãã åæ§ã«ãå»ç LLM ã¯ãããŒã¿ã®äžåè¡¡ã«ãããåžå°çŸæ£ã®èšºæã«èŠæŠããå¯èœæ§ããããŸãã ãã®æè»æ§ã®ãªãã¯ãç¹å®ã®ã¿ã¹ã¯ãã³ã³ããã¹ãã«åãã㊠LLM ãå調æŽããããã®éææ§ã®å¿ èŠæ§ãæµ®ã圫ãã«ããŠããŸãã
3. åèŠãšç¥èã®ã®ã£ãã
LLMã«ããèšå€§ãªåŠç¿ããŒã¿ã®åŠçã¯ãã¢ã«ãŽãªãºã ãšã¢ãã«ã¢ãŒããã¯ãã£ã«ãã£ãŠèª²ãããå¶çŽãåããŸããäŸãã°ãå»åŠåéã®LLMã¯ãäžåè¡¡ãªããŒã¿ã»ããã§åŠç¿ããå Žåã人å£çµ±èšåŠçãã€ã¢ã¹ã瀺ãå¯èœæ§ããããŸãããŸããLLMã®ããããªåéã«ãããç緎床ã誀解ãæããèªä¿¡éå°ã§èª€ã£ãåºåã«ã€ãªããå¯èœæ§ããããŸãããããããã€ã¢ã¹ãç¥èã®ã£ããã«å¯ŸåŠããã«ã¯ã远å ããŒã¿ã ãã§ã¯äžååã§ããã¢ãã«ã®åŠçã¡ã«ããºã ã®æ€èšŒãå¿ èŠã§ãã
4. æ³çããã³å«çç責任
LLMã®ææ§ãªæ§è³ªã¯ããã®å€æã«ãã£ãŠçããæå®³ã«å¯Ÿãã責任ã«é¢ããŠæ³çã°ã¬ãŒãŸãŒã³ãçã¿åºããŸããå»ççŸå Žã«ãããŠLLMã誀ã£ãå©èšãè¡ããæ£è ã«æå®³ãäžããå Žåãã¢ãã«ã®äžéææ§ããã«è²¬ä»»ã®æåšãæç¢ºã«ããããšã¯å°é£ã§ãããã®æ³çäžç¢ºå®æ§ã¯ãæ©å¯æ§ã®é«ãåéã«LLMãå°å ¥ããçµç¹ã«ãšã£ãŠãªã¹ã¯ãšãªããæç¢ºãªã¬ããã³ã¹ãšéææ§ã®å¿ èŠæ§ãæµ®ã圫ãã«ããŸãã
5. æ©å¯æ§ã®é«ãã¢ããªã±ãŒã·ã§ã³ã®ä¿¡é Œæ§ã®åé¡
å»çãéèãªã©ã®éèŠãªåéã§äœ¿çšããã LLM ã®å Žåãéææ§ã®æ¬ åŠã«ããä¿¡é Œæ§ãæãªãããŸãã ãŠãŒã¶ãŒãšèŠå¶åœå±ã¯ããããã®ã¢ãã«ã«ãã€ã¢ã¹ãããã£ãŠããªãããäžå ¬å¹³ãªåºæºã«åºã¥ããŠæææ±ºå®ãè¡ã£ãŠããªãããšã確èªããå¿ èŠããããŸãã LLM ã«ãã€ã¢ã¹ããªãããšã確èªããã«ã¯ãLLM ã®æææ±ºå®ããã»ã¹ãçè§£ããå¿ èŠããããå«ççãªå±éã®ããã®èª¬æå¯èœæ§ã®éèŠæ§ã匷調ãããŸãã
6. å人ããŒã¿ã«é¢ãããªã¹ã¯
LLM ã«ã¯ãæ©å¯ã®å人æ å ±ãå«ãŸããå¯èœæ§ãããåºç¯ãªãã¬ãŒãã³ã° ããŒã¿ãå¿ èŠã§ãã ãããã®ã¢ãã«ã®ãã©ã㯠ããã¯ã¹ã®æ§è³ªã«ããããã®ããŒã¿ãã©ã®ããã«åŠçãã䜿çšããããã«ã€ããŠæžå¿µãçããŸãã ããšãã°ãæ£è èšé²ã«ã€ããŠãã¬ãŒãã³ã°ãåããå»ç LLM ã¯ãããŒã¿ã®ãã©ã€ãã·ãŒãšäœ¿çšæ³ã«ã€ããŠçåãçããŸãã å人ããŒã¿ãæªçšããããæªçšããããããªãããã«ããã«ã¯ããããã®ã¢ãã«å ã®ééçãªããŒã¿åŠçããã»ã¹ãå¿ èŠã§ãã
è§£éå¯èœæ§ã®ããã®æ°ããªãœãªã¥ãŒã·ã§ã³
ãããã®èª²é¡ã«å¯ŸåŠããããã«ãæ°ããæè¡ãéçºãããŠããŸãã ãããã«ã¯ãåäºå® (CF) è¿äŒŒææ³ãå«ãŸããŸãã æåã®æ¹æ³ã§ã¯ãä»ã®æŠå¿µãäžå®ã«ä¿ã¡ãªãããç¹å®ã®ããã¹ãæŠå¿µã倿Žããããã« LLM ã«æç€ºããŸãã ãã®ã¢ãããŒãã¯å¹æçã§ã¯ãããŸãããæšè«æã«ãªãœãŒã¹ã倧éã«æ¶è²»ããŸãã
XNUMX çªç®ã®ã¢ãããŒãã«ã¯ããã¬ãŒãã³ã°äžã« LLM ã«ãã£ãŠã¬ã€ããããå°çšã®åã蟌ã¿ã¹ããŒã¹ãäœæããããšãå«ãŸããŸãã ãã®ç©ºéã¯å æé¢ä¿ã°ã©ããšäžèŽããŠãããè¿äŒŒãã CF ã®äžèŽãç¹å®ããã®ã«åœ¹ç«ã¡ãŸãã ãã®æ¹æ³ã¯ããã¹ãæã«å¿ èŠãªãªãœãŒã¹ãå°ãªããæ°ååã®ãã©ã¡ãŒã¿ãŒãæã€ LLM ã§ãã£ãŠãã¢ãã«ã®äºæž¬ã广çã«èª¬æã§ããããšã瀺ãããŠããŸãã
ãããã®ã¢ãããŒãã¯ãå®å šæ§ã確ä¿ãä¿¡é Œã確ç«ããããã«ãNLP ã·ã¹ãã ã«ãããå æé¢ä¿ã®èª¬æã®éèŠæ§ã匷調ããŠããŸãã åäºå®è¿äŒŒã¯ãçæããã»ã¹ã«ãããç¹å®ã®æŠå¿µãç°ãªãå Žåã«ç¹å®ã®ããã¹ããã©ã®ããã«å€åããããæ³åããæ¹æ³ãæäŸããNLP ã¢ãã«ã«ãããé«ã¬ãã«ã®æŠå¿µã®å®éçãªå æå¹ææšå®ã«åœ¹ç«ã¡ãŸãã
詳现: LLM ã®èª¬ææ¹æ³ãšå æé¢ä¿
ãããŒãããã³æ©èœéèŠåºŠããŒã«
ãããŒãã³ã°ã¯ãã¢ãã«å ã®å éšè¡šçŸããšã³ã³ãŒãããŠãããã®ãè§£èªããããã«äœ¿çšãããææ³ã§ãã ããã¯ç£èŠãããŸãã¯ç£èŠãªãã®ããããã§ããããããã¯ãŒã¯å ã®ç¹å®ã®å Žæã§ç¹å®ã®æŠå¿µããšã³ã³ãŒããããŠãããã©ããã倿ããããšãç®çãšããŠããŸãã Geiger et al. ã匷調ããŠããããã«ããããŒãã¯ããçšåºŠå¹æçã§ã¯ãããŸãããå æé¢ä¿ã®èª¬æãæäŸãããšããç¹ã§ã¯äžååã§ãã ïŒ2021幎ïŒã
èª¬æææ³ã®å¥ã®åœ¢åŒã§ããç¹åŸŽéèŠåºŠããŒã«ã¯ãå€ãã®å Žåãå ¥åç¹åŸŽã«çŠç¹ãåœãŠãŸãããäžéšã®åŸé ããŒã¹ã®ææ³ã§ã¯ãããé ãç¶æ ã«æ¡åŒµããŸãã äžäŸã¯ãããŒã¹ã©ã€ã³ (åäºå®ãCF) å ¥åã調æ»ããããšã«ãã£ãŠå æé¢ä¿ã®è§£éãæäŸããçµ±ååŸé æ³ã§ãã ãããã®ææ³ã¯ããã®æçšæ§ã«ãããããããåçŽãªå ¥åããããã£ãè¶ ããŠãåæãçŸå®äžçã®æŠå¿µãšçµã³ä»ããã®ã«äŸç¶ãšããŠèŠåŽããŠããŸãã
ä»å ¥ããŒã¹ã®æ¹æ³
ä»å ¥ããŒã¹ã®ææ³ã§ã¯ãå ¥åãŸãã¯å éšè¡šçŸã倿ŽããŠã¢ãã«ã®åäœãžã®åœ±é¿ãç ç©¶ããŸãã ãããã®æ¹æ³ã§ã¯ãå æå¹æãæšå®ããããã« CF ç¶æ ãäœæã§ããŸãããæ éã«å¶åŸ¡ããªãéããä¿¡ããããªãå ¥åããããã¯ãŒã¯ç¶æ ãçæãããããšããããããŸãã S-learner ã®æŠå¿µããã€ã³ã¹ãã¬ãŒã·ã§ã³ãåŸã Causal Proxy Model (CPM) ã¯ããã®åéã«ãããæ°ããã¢ãããŒãã§ãããCF å ¥åã®äžã§èª¬æãããã¢ãã«ã®åäœãæš¡å£ããŸãã ãã ããã¢ãã«ããšã«åå¥ã®èª¬æãå¿ èŠã§ããããšã倧ããªå¶éã«ãªããŸãã
åäºå®ã®è¿äŒŒ
åäºå®ç仮説ã¯ãæ©æ¢°åŠç¿ã«ãããããŒã¿æ¡åŒµã«ãããŠåºãå©çšãããŠãããæ§ã ãªèŠå ãã©ãã«ãžã®æåã䌎ããŸãããããã¯ãæåç·šéããã¥ãŒãªã¹ãã£ãã¯ãªããŒã¯ãŒã眮æããŸãã¯èªåããã¹ãæžãæãã«ãã£ãŠçæã§ããŸããæåç·šéã¯æ£ç¢ºã§ãããå€ãã®ãªãœãŒã¹ãæ¶è²»ããŸããããŒã¯ãŒãããŒã¹ã®ææ³ã«ã¯éçããããçæçãªã¢ãããŒãã¯æµæ¢æ§ãšç¶²çŸ æ§ã®ãã©ã³ã¹ãå®çŸããŸãã
å¿ å®ãªèª¬æ
説æã«ãããå¿ å®æ§ãšã¯ãã¢ãã«ã®æ ¹åºã«ããæšè«ãæ£ç¢ºã«æåããããšãæããŸããå¿ å®æ§ã«ã¯æ®éçã«åãå ¥ããããŠããå®çŸ©ã¯ãªããæåºŠãäžè²«æ§ãç¹åŸŽééèŠåºŠã®äžèŽãå ç¢æ§ãã·ãã¥ã¬ãŒã·ã§ã³å¯èœæ§ãšãã£ãæ§ã ãªææšã«ãã£ãŠç¹åŸŽã¥ããããŸãããããã®ææ³ã®å€ãã¯ç¹åŸŽéã¬ãã«ã®èª¬æã«çŠç¹ãåœãŠãŠãããçžé¢é¢ä¿ãšå æé¢ä¿ãæ··åããã¡ã§ããç§ãã¡ã®ç ç©¶ã¯ãå æé¢ä¿ã«é¢ããæç®ã掻çšããçŽæçãªåºæºã§ãããé åºå¿ 宿§ããææ¡ããããšã§ãé«ã¬ãã«ã®æŠå¿µèª¬æãæäŸããããšãç®æããŠããŸãã
ç§ãã¡ã¯æ³åŠä¿®å£«èª²çšïŒLLMïŒã«å åšããè€éããæ·±ãæãäžãããã®ããã©ãã¯ããã¯ã¹ãçãªæ§è³ªãšãããããããé倧ãªèª²é¡ãçè§£ããŠããŸãããå»çãéèãšãã£ãããªã±ãŒããªåéã«ããã誀ã£ãæææ±ºå®ã®ãªã¹ã¯ãããåèŠãå ¬å¹³æ§ããããå«ççãªãžã¬ã³ãã«è³ããŸã§ãæ³åŠä¿®å£«èª²çšã«ãããéææ§ã®å¿ èŠæ§ã¯ãã€ãŠãªãã»ã©é«ãŸã£ãŠããŸãã
LLM ã®å°æ¥ãšãç§ãã¡ã®æ¥åžžç掻ãéèŠãªæææ±ºå®ããã»ã¹ãžã®çµ±åã¯ããããã®ã¢ãã«ãããé«åºŠãªãã®ã«ããã ãã§ãªããããçè§£å¯èœã§èª¬æè²¬ä»»ã®ãããã®ã«ããããšãã§ãããã©ããã«ããã£ãŠããŸãã 説æå¯èœæ§ãšè§£éå¯èœæ§ã®è¿œæ±ã¯ãåãªãæè¡çãªåãçµã¿ã§ã¯ãªããAI ã·ã¹ãã ã®ä¿¡é Œãæ§ç¯ããããã®åºæ¬çãªåŽé¢ã§ãã LLM ã瀟äŒã«ããã«çµ±åãããã«ã€ããŠãAI å®åè ã ãã§ãªãããããã®ã·ã¹ãã ãšå¯Ÿè©±ãããã¹ãŠã®ãŠãŒã¶ãŒãããéææ§ãžã®èŠæ±ãé«ãŸããŸãã