Artificial Intelligence
AI ããã³ LLM ãšã³ãžãã¢ã®ããã® Python ã®ãã¶ã€ã³ ãã¿ãŒã³: å®è·µã¬ã€ã

AI ãšã³ãžãã¢ã«ãšã£ãŠãè€éãªã·ã¹ãã ãæ§ç¯ããå Žåã¯ç¹ã«ãã¯ãªãŒã³ãã€å¹ççã§ä¿å®ããããã³ãŒããäœæããããšãéèŠã§ãã
ãã¶ã€ã³ãã¿ãŒã³ ãœãããŠã§ã¢èšèšã«ãããäžè¬çãªåé¡ã«å¯Ÿããåå©çšå¯èœãªãœãªã¥ãŒã·ã§ã³ã§ãã AIããã³å€§èŠæš¡èšèªã¢ãã«ïŒLLMïŒãšã³ãžãã¢ãã¶ã€ã³ãã¿ãŒã³ã¯ãè€éãªã¯ãŒã¯ãããŒãå¹ççã«åŠçããå ç¢ã§ã¹ã±ãŒã©ãã«ã§ä¿å®æ§ã®é«ãã·ã¹ãã ã®æ§ç¯ã«åœ¹ç«ã¡ãŸãããã®èšäºã§ã¯ãPythonã®ãã¶ã€ã³ãã¿ãŒã³ã«ã€ããŠãAIãš LLMããŒã¹ã®ã·ã¹ãã ãããããã®ãã¿ãŒã³ããå®è·µçãªAIãŠãŒã¹ã±ãŒã¹ãšPythonã³ãŒãäŸãçšããŠè§£èª¬ããŸãã
AI ãšæ©æ¢°åŠç¿ã®ã³ã³ããã¹ãã§ç¹ã«åœ¹ç«ã€ããã€ãã®äž»èŠãªèšèšãã¿ãŒã³ãšãPython ã®äŸãèŠãŠã¿ãŸãããã
AIãšã³ãžãã¢ã«ãšã£ãŠãã¶ã€ã³ãã¿ãŒã³ãéèŠãªçç±
AI ã·ã¹ãã ã«ã¯ãå€ãã®å Žåãæ¬¡ã®ãã®ãå«ãŸããŸãã
- è€éãªãªããžã§ã¯ãã®äœæ (äŸ: ã¢ãã«ã®èªã¿èŸŒã¿ãããŒã¿ååŠçãã€ãã©ã€ã³)ã
- ã³ã³ããŒãã³ãéã®çžäºäœçšã®ç®¡ç (äŸ: ã¢ãã«æšè«ããªã¢ã«ã¿ã€ã æŽæ°)ã
- å€åããèŠä»¶ã«å¯Ÿããã¹ã±ãŒã©ããªãã£ãä¿å®æ§ãæè»æ§ãåŠçããŸãã
ãã¶ã€ã³ ãã¿ãŒã³ã¯ãããã®èª²é¡ã«å¯ŸåŠããæç¢ºãªæ§é ãæäŸããã¢ãããã¯ãªä¿®æ£ãæžãããŸãããã¶ã€ã³ ãã¿ãŒã³ã¯äž»ã« 3 ã€ã®ã«ããŽãªã«åé¡ãããŸãã
- åµé çãã¿ãŒã³: ãªããžã§ã¯ãã®äœæã«çŠç¹ãåœãŠãŸãã(ã·ã³ã°ã«ãã³ããã¡ã¯ããªãŒããã«ããŒ)
- æ§é ãã¿ãŒã³: ãªããžã§ã¯ãéã®é¢ä¿ãæŽçããŸãã(ã¢ããã¿ããã³ã¬ãŒã¿)
- è¡åãã¿ãŒã³: ãªããžã§ã¯ãéã®éä¿¡ã管çããŸãã(æŠç¥ããªãã¶ãŒããŒ)
1. ã·ã³ã°ã«ãã³ãã¿ãŒã³
åœåŠæ ¡åºã® ã·ã³ã°ã«ãã³ãã¿ãŒã³ ã¯ã©ã¹ã«ã€ã³ã¹ã¿ã³ã¹ã 1 ã€ã ãååšããããšãä¿èšŒãããã®ã€ã³ã¹ã¿ã³ã¹ãžã®ã°ããŒãã« ã¢ã¯ã»ã¹ ãã€ã³ããæäŸããŸããããã¯ãæ§æèšå®ããã° ã·ã¹ãã ãã¢ãã« ã€ã³ã¹ã¿ã³ã¹ãªã©ã®å ±æãªãœãŒã¹ãåé·æ§ãªãäžè²«ããŠç®¡çããå¿ èŠããã AI ã¯ãŒã¯ãããŒã§ç¹ã«åœ¹ç«ã¡ãŸãã
ãã€äœ¿çšããã
- ã°ããŒãã«æ§æïŒäŸïŒã¢ãã«ã®ãã€ããŒãã©ã¡ãŒã¿ïŒã®ç®¡çã
- è€æ°ã®ã¹ã¬ãããŸãã¯ããã»ã¹éã§ãªãœãŒã¹ãå ±æããïŒäŸïŒ GPU ã¡ã¢ãª).
- åäžã® æšè«ãšã³ãžã³ ãŸãã¯ããŒã¿ããŒã¹æ¥ç¶ã
補åã®å°å ¥
AI ã¢ãã«ã®æ§æã管çããããã« Python ã§ã·ã³ã°ã«ãã³ ãã¿ãŒã³ãå®è£ ããæ¹æ³ã¯æ¬¡ã®ãšããã§ãã
class ModelConfig:
"""
A Singleton class for managing global model configurations.
"""
_instance = None # Class variable to store the singleton instance
def __new__(cls, *args, **kwargs):
if not cls._instance:
# Create a new instance if none exists
cls._instance = super().__new__(cls)
cls._instance.settings = {} # Initialize configuration dictionary
return cls._instance
def set(self, key, value):
"""
Set a configuration key-value pair.
"""
self.settings[key] = value
def get(self, key):
"""
Get a configuration value by key.
"""
return self.settings.get(key)
# Usage Example
config1 = ModelConfig()
config1.set("model_name", "GPT-4")
config1.set("batch_size", 32)
# Accessing the same instance
config2 = ModelConfig()
print(config2.get("model_name")) # Output: GPT-4
print(config2.get("batch_size")) # Output: 32
print(config1 is config2) # Output: True (both are the same instance)
説æ
- åœåŠæ ¡åºã®
__new__æ¹æ³: ããã«ãããã¯ã©ã¹ã®ã€ã³ã¹ã¿ã³ã¹ã 1 ã€ã ãäœæãããŸããã€ã³ã¹ã¿ã³ã¹ããã§ã«ååšããå Žåã¯ãæ¢åã®ã€ã³ã¹ã¿ã³ã¹ãè¿ãããŸãã - å
±æç¶æ
ïŒ äž¡æ¹
config1ããã³config2åãã€ã³ã¹ã¿ã³ã¹ãæãããããã¹ãŠã®æ§æãã°ããŒãã«ã«ã¢ã¯ã»ã¹å¯èœã«ãªããäžè²«æ§ãä¿ãããŸãã - AIãŠãŒã¹ã±ãŒã¹: ãã®ãã¿ãŒã³ã䜿çšããŠãããŒã¿ã»ãããžã®ãã¹ããã°æ§æãç°å¢å€æ°ãªã©ã®ã°ããŒãã«èšå®ã管çããŸãã
2. ãã¡ã¯ããªãŒãã¿ãŒã³
åœåŠæ ¡åºã® ãã¡ã¯ããªãã¿ãŒã³ ãªããžã§ã¯ãã®äœæããµãã¯ã©ã¹ãŸãã¯å°çšã®ãã¡ã¯ã㪠ã¡ãœããã«å§ä»»ããæ¹æ³ãæäŸããŸããAI ã·ã¹ãã ã§ã¯ããã®ãã¿ãŒã³ã¯ãã³ã³ããã¹ãã«åºã¥ããŠããŸããŸãªçš®é¡ã®ã¢ãã«ãããŒã¿ ããŒããŒããŸãã¯ãã€ãã©ã€ã³ãåçã«äœæããã®ã«æé©ã§ãã
ãã€äœ¿çšããã
- ãŠãŒã¶ãŒå ¥åãŸãã¯ã¿ã¹ã¯èŠä»¶ã«åºã¥ããŠã¢ãã«ãåçã«äœæããŸãã
- è€éãªãªããžã§ã¯ãäœæããžã㯠(äŸ: è€æ°ã¹ãããã®ååŠçãã€ãã©ã€ã³) ã管çããŸãã
- æè»æ§ãåäžãããããã«ããªããžã§ã¯ãã®ã€ã³ã¹ã¿ã³ã¹åãã·ã¹ãã ã®æ®ãã®éšåããåé¢ããŸãã
補åã®å°å ¥
ããã¹ãåé¡ãèŠçŽã翻蚳ãªã©ãããŸããŸãª AI ã¿ã¹ã¯çšã®ã¢ãã«ãäœæããããã®ãã¡ã¯ããªãŒãæ§ç¯ããŸãããã
class BaseModel:
"""
Abstract base class for AI models.
"""
def predict(self, data):
raise NotImplementedError("Subclasses must implement the `predict` method")
class TextClassificationModel(BaseModel):
def predict(self, data):
return f"Classifying text: {data}"
class SummarizationModel(BaseModel):
def predict(self, data):
return f"Summarizing text: {data}"
class TranslationModel(BaseModel):
def predict(self, data):
return f"Translating text: {data}"
class ModelFactory:
"""
Factory class to create AI models dynamically.
"""
@staticmethod
def create_model(task_type):
"""
Factory method to create models based on the task type.
"""
task_mapping = {
"classification": TextClassificationModel,
"summarization": SummarizationModel,
"translation": TranslationModel,
}
model_class = task_mapping.get(task_type)
if not model_class:
raise ValueError(f"Unknown task type: {task_type}")
return model_class()
# Usage Example
task = "classification"
model = ModelFactory.create_model(task)
print(model.predict("AI will transform the world!"))
# Output: Classifying text: AI will transform the world!
説æ
- æœè±¡åºæ¬ã¯ã©ã¹ïŒ
BaseModelã¯ã©ã¹ã¯ã€ã³ã¿ãŒãã§ãŒã¹ãå®çŸ©ããŸãïŒpredict) ããã¹ãŠã®ãµãã¯ã©ã¹ã§å®è£ ããŠäžè²«æ§ã確ä¿ããå¿ èŠããããŸãã - ãã¡ã¯ããªãŒããžãã¯ïŒ
ModelFactoryã¿ã¹ã¯ã®çš®é¡ã«åºã¥ããŠé©åãªã¯ã©ã¹ãåçã«éžæããã€ã³ã¹ã¿ã³ã¹ãäœæããŸãã - æ¡åŒµæ§: æ°ããã¢ãã«ã¿ã€ãã远å ããã®ã¯ç°¡åã§ããæ°ãããµãã¯ã©ã¹ãå®è£
ãããã¡ã¯ããªãŒã®
task_mapping.
AIãŠãŒã¹ã±ãŒã¹
ã¿ã¹ã¯ã«åºã¥ããŠç°ãªã LLM (BERTãGPTãT5 ãªã©) ãéžæããã·ã¹ãã ãèšèšããŠãããšããŸãããã¡ã¯ããªãŒ ãã¿ãŒã³ã䜿çšãããšãæ¢åã®ã³ãŒãã倿Žããããšãªããæ°ããã¢ãã«ãå©çšå¯èœã«ãªã£ããšãã«ã·ã¹ãã ãç°¡åã«æ¡åŒµã§ããŸãã
3. ãã«ããŒãã¿ãŒã³
åœåŠæ ¡åºã® ãã«ããŒãã¿ãŒã³ è€éãªãªããžã§ã¯ãã®æ§ç¯ãšãã®è¡šçŸãåé¢ããŸãããªããžã§ã¯ãã®åæåãæ§æã«è€æ°ã®ã¹ããããå«ãŸããå Žåã«äŸ¿å©ã§ãã
ãã€äœ¿çšããã
- è€æ°ã¹ãããã®ãã€ãã©ã€ã³ã®æ§ç¯ (äŸ: ããŒã¿ã®ååŠç)ã
- å®éšãŸãã¯ã¢ãã«ãã¬ãŒãã³ã°ã®æ§æã管çããŸãã
- å€ãã®ãã©ã¡ãŒã¿ãå¿ èŠãšãããªããžã§ã¯ããäœæããå¯èªæ§ãšä¿å®æ§ã確ä¿ããŸãã
補åã®å°å ¥
ãã«ã㌠ãã¿ãŒã³ã䜿çšããŠããŒã¿ååŠçãã€ãã©ã€ã³ãäœæããæ¹æ³ã¯æ¬¡ã®ãšããã§ãã
class DataPipeline:
"""
Builder class for constructing a data preprocessing pipeline.
"""
def __init__(self):
self.steps = []
def add_step(self, step_function):
"""
Add a preprocessing step to the pipeline.
"""
self.steps.append(step_function)
return self # Return self to enable method chaining
def run(self, data):
"""
Execute all steps in the pipeline.
"""
for step in self.steps:
data = step(data)
return data
# Usage Example
pipeline = DataPipeline()
pipeline.add_step(lambda x: x.strip()) # Step 1: Strip whitespace
pipeline.add_step(lambda x: x.lower()) # Step 2: Convert to lowercase
pipeline.add_step(lambda x: x.replace(".", "")) # Step 3: Remove periods
processed_data = pipeline.run(" Hello World. ")
print(processed_data) # Output: hello world
説æ
- é£éã¡ãœããïŒ
add_stepãã®ã¡ãœããã䜿çšãããšããã€ãã©ã€ã³ãå®çŸ©ãããšãã«ãçŽæçã§ã³ã³ãã¯ããªæ§æãé£éãããããšãã§ããŸãã - ã¹ããããã€ã¹ãããã®å®è¡: ãã€ãã©ã€ã³ã¯ãåã¹ããããé çªã«å®è¡ããŠããŒã¿ãåŠçããŸãã
- AIãŠãŒã¹ã±ãŒã¹: ãã«ã㌠ãã¿ãŒã³ã䜿çšããŠãè€éã§åå©çšå¯èœãªããŒã¿ååŠçãã€ãã©ã€ã³ãŸãã¯ã¢ãã« ãã¬ãŒãã³ã° ã»ããã¢ãããäœæããŸãã
4. æŠç¥ãã¿ãŒã³
åœåŠæ ¡åºã® æŠç¥ãã¿ãŒã³ 亀æå¯èœãªã¢ã«ãŽãªãºã ã®ãã¡ããªãŒãå®çŸ©ããåã¢ã«ãŽãªãºã ãã«ãã»ã«åããŠãå®è¡æã«åäœãåçã«å€æŽã§ããããã«ããŸããããã¯ãåãããã»ã¹ (æšè«ãããŒã¿åŠçãªã©) ã§ã³ã³ããã¹ãã«å¿ããŠç°ãªãã¢ãããŒããå¿ èŠã«ãªãå¯èœæ§ããã AI ã·ã¹ãã ã§ç¹ã«åœ¹ç«ã¡ãŸãã
ãã€äœ¿çšããã
- ç°ãªã æšè« æŠç¥ïŒäŸïŒãããåŠçãšã¹ããªãŒãã³ã°ïŒã
- ããŸããŸãªããŒã¿åŠçæè¡ãåçã«é©çšããŸãã
- å©çšå¯èœãªã€ã³ãã©ã¹ãã©ã¯ãã£ã«åºã¥ããŠãªãœãŒã¹ç®¡çæŠç¥ãéžæããŸãã
補åã®å°å ¥
æŠç¥ãã¿ãŒã³ã䜿çšããŠããããæšè«ãšã¹ããªãŒãã³ã°æšè«ãšãã 2 ã€ã®ç°ãªãæšè«æŠç¥ã AI ã¢ãã«ã«å®è£ ããŠã¿ãŸãããã
class InferenceStrategy:
"""
Abstract base class for inference strategies.
"""
def infer(self, model, data):
raise NotImplementedError("Subclasses must implement the `infer` method")
class BatchInference(InferenceStrategy):
"""
Strategy for batch inference.
"""
def infer(self, model, data):
print("Performing batch inference...")
return [model.predict(item) for item in data]
class StreamInference(InferenceStrategy):
"""
Strategy for streaming inference.
"""
def infer(self, model, data):
print("Performing streaming inference...")
results = []
for item in data:
results.append(model.predict(item))
return results
class InferenceContext:
"""
Context class to switch between inference strategies dynamically.
"""
def __init__(self, strategy: InferenceStrategy):
self.strategy = strategy
def set_strategy(self, strategy: InferenceStrategy):
"""
Change the inference strategy dynamically.
"""
self.strategy = strategy
def infer(self, model, data):
"""
Delegate inference to the selected strategy.
"""
return self.strategy.infer(model, data)
# Mock Model Class
class MockModel:
def predict(self, input_data):
return f"Predicted: {input_data}"
# Usage Example
model = MockModel()
data = ["sample1", "sample2", "sample3"]
context = InferenceContext(BatchInference())
print(context.infer(model, data))
# Output:
# Performing batch inference...
# ['Predicted: sample1', 'Predicted: sample2', 'Predicted: sample3']
# Switch to streaming inference
context.set_strategy(StreamInference())
print(context.infer(model, data))
# Output:
# Performing streaming inference...
# ['Predicted: sample1', 'Predicted: sample2', 'Predicted: sample3']
説æ
- æœè±¡æŠç¥ã¯ã©ã¹ïŒ
InferenceStrategyãã¹ãŠã®æŠç¥ãåŸãå¿ èŠãããã€ã³ã¿ãŒãã§ãŒã¹ãå®çŸ©ããŸãã - å
·äœçãªæŠç¥: åæŠç¥ïŒäŸïŒ
BatchInference,StreamInference) ã¯ããã®ã¢ãããŒãã«åºæã®ããžãã¯ãå®è£ ããŸãã - ãã€ãããã¯ã¹ã€ããã³ã°ïŒ
InferenceContextå®è¡æã«æŠç¥ãåãæ¿ããããšãã§ãããããããŸããŸãªãŠãŒã¹ã±ãŒã¹ã«æè»ã«å¯Ÿå¿ã§ããŸãã
ãã€äœ¿çšããã
- åãæ¿ã ãããæšè« ãªãã©ã€ã³åŠççš ã¹ããªãŒãã³ã°æšè« ãªã¢ã«ã¿ã€ã ã¢ããªã±ãŒã·ã§ã³åãã
- ã¿ã¹ã¯ãŸãã¯å ¥å圢åŒã«åºã¥ããŠãããŒã¿æ¡åŒµãŸãã¯ååŠçææ³ãåçã«èª¿æŽããŸãã
5. ãªãã¶ãŒããŒãã¿ãŒã³
åœåŠæ ¡åºã® ãªãã¶ãŒããŒãã¿ãŒã³ ãªããžã§ã¯ãéã« 1 察å€ã®é¢ä¿ã確ç«ããŸãã1 ã€ã®ãªããžã§ã¯ã (ãµããžã§ã¯ã) ã®ç¶æ ãå€åãããšããã®ãã¹ãŠã®åŸå±ãªããžã§ã¯ã (ãªãã¶ãŒããŒ) ã«èªåçã«éç¥ãããŸããããã¯ããªã¢ã«ã¿ã€ã ç£èŠãã€ãã³ãåŠçããŸãã¯ããŒã¿åæãè¡ã AI ã·ã¹ãã ã§ç¹ã«åœ¹ç«ã¡ãŸãã
ãã€äœ¿çšããã
- ã¢ãã«ã®ãã¬ãŒãã³ã°äžã«ç²ŸåºŠãæå€±ãªã©ã®ã¡ããªãã¯ãç£èŠããŸãã
- ããã·ã¥ããŒããŸãã¯ãã°ã®ãªã¢ã«ã¿ã€ã æŽæ°ã
- è€éãªã¯ãŒã¯ãããŒå ã®ã³ã³ããŒãã³ãéã®äŸåé¢ä¿ã管çããŸãã
補åã®å°å ¥
ãªãã¶ãŒã㌠ãã¿ãŒã³ã䜿çšããŠãAI ã¢ãã«ã®ããã©ãŒãã³ã¹ããªã¢ã«ã¿ã€ã ã§ç£èŠããŠã¿ãŸãããã
class Subject:
"""
Base class for subjects being observed.
"""
def __init__(self):
self._observers = []
def attach(self, observer):
"""
Attach an observer to the subject.
"""
self._observers.append(observer)
def detach(self, observer):
"""
Detach an observer from the subject.
"""
self._observers.remove(observer)
def notify(self, data):
"""
Notify all observers of a change in state.
"""
for observer in self._observers:
observer.update(data)
class ModelMonitor(Subject):
"""
Subject that monitors model performance metrics.
"""
def update_metrics(self, metric_name, value):
"""
Simulate updating a performance metric and notifying observers.
"""
print(f"Updated {metric_name}: {value}")
self.notify({metric_name: value})
class Observer:
"""
Base class for observers.
"""
def update(self, data):
raise NotImplementedError("Subclasses must implement the `update` method")
class LoggerObserver(Observer):
"""
Observer to log metrics.
"""
def update(self, data):
print(f"Logging metric: {data}")
class AlertObserver(Observer):
"""
Observer to raise alerts if thresholds are breached.
"""
def __init__(self, threshold):
self.threshold = threshold
def update(self, data):
for metric, value in data.items():
if value > self.threshold:
print(f"ALERT: {metric} exceeded threshold with value {value}")
# Usage Example
monitor = ModelMonitor()
logger = LoggerObserver()
alert = AlertObserver(threshold=90)
monitor.attach(logger)
monitor.attach(alert)
# Simulate metric updates
monitor.update_metrics("accuracy", 85) # Logs the metric
monitor.update_metrics("accuracy", 95) # Logs and triggers alert
- ãµãŒãã¹ã«ããŽãª: ãªãã¶ãŒããŒã®ãªã¹ãã管çããç¶æ
ãå€ãã£ããšãã«éç¥ããŸãããã®äŸã§ã¯ã
ModelMonitorã¯ã©ã¹ã¯ã¡ããªãã¯ã远跡ããŸãã - ãªãã¶ãŒããŒ: éç¥ãåãããšãã«ç¹å®ã®ã¢ã¯ã·ã§ã³ãå®è¡ããŸããããšãã°ã
LoggerObserverãã°ã¡ããªã¯ã¹ã¯ãAlertObserverãããå€ãè¶ ããå Žåã«ã¢ã©ãŒããçºããŸãã - åé¢èšèš: ãªãã¶ãŒããŒãšãµããžã§ã¯ãã¯ççµåãããŠãããã·ã¹ãã ã¯ã¢ãžã¥ãŒã«åããæ¡åŒµå¯èœã«ãªã£ãŠããŸãã
AI ãšã³ãžãã¢ãšåŸæ¥ã®ãšã³ãžãã¢ã®èšèšãã¿ãŒã³ã®éã
ãã¶ã€ã³ ãã¿ãŒã³ã¯æ®éçã«é©çšå¯èœã§ãããåŸæ¥ã®ãœãããŠã§ã¢ ãšã³ãžãã¢ãªã³ã°ãšæ¯èŒããŠãAI ãšã³ãžãã¢ãªã³ã°ã«å®è£ ãããšç¬ç¹ã®ç¹æ§ã垯ã³ãŸããéãã¯ãAI ã·ã¹ãã ã«åºæã®èª²é¡ãç®æšãã¯ãŒã¯ãããŒã«ãããå€ãã®å ŽåãåŸæ¥ã®çšéãè¶ ããŠãã¿ãŒã³ãé©å¿ãŸãã¯æ¡åŒµããå¿ èŠããããŸãã
1. ãªããžã§ã¯ãã®äœæ: éçããŒãºãšåçããŒãº
- äŒçµ±çãªãšã³ãžãã¢ãªã³ã°: ãã¡ã¯ããªãã·ã³ã°ã«ãã³ãªã©ã®ãªããžã§ã¯ãäœæãã¿ãŒã³ã¯ãæ§æãããŒã¿ããŒã¹æ¥ç¶ããŸãã¯ãŠãŒã¶ãŒ ã»ãã·ã§ã³ç¶æ ã管çããããã«ãã䜿çšãããŸãããããã¯éåžžãéçã§ãããã·ã¹ãã èšèšæã«æç¢ºã«å®çŸ©ãããŸãã
- AIãšã³ãžãã¢ãªã³ã°: ãªããžã§ã¯ãã®äœæã«ã¯å€ãã®å Žå åçã¯ãŒã¯ãããŒãã®ãããªïŒ
- ãŠãŒã¶ãŒå ¥åãã·ã¹ãã èŠä»¶ã«åºã¥ããŠãå³åº§ã«ã¢ãã«ãäœæããŸãã
- 翻蚳ãèŠçŽãåé¡ãªã©ã®ã¿ã¹ã¯çšã«ããŸããŸãªã¢ãã«æ§æãèªã¿èŸŒã¿ãŸãã
- ããŒã¿ã»ããã®ç¹æ§ (衚圢åŒãšéæ§é åããã¹ããªã©) ã«ãã£ãŠç°ãªãè€æ°ã®ããŒã¿åŠçãã€ãã©ã€ã³ãã€ã³ã¹ã¿ã³ã¹åããŸãã
äŸ:AI ã§ã¯ããã¡ã¯ããªãŒ ãã¿ãŒã³ã¯ã¿ã¹ã¯ã®çš®é¡ãšããŒããŠã§ã¢ã®å¶çŽã«åºã¥ããŠãã£ãŒãã©ãŒãã³ã° ã¢ãã«ãåçã«çæããå¯èœæ§ããããŸãããåŸæ¥ã®ã·ã¹ãã ã§ã¯ãåçŽã«ãŠãŒã¶ãŒ ã€ã³ã¿ãŒãã§ã€ã¹ ã³ã³ããŒãã³ããçæããå¯èœæ§ããããŸãã
2. ããã©ãŒãã³ã¹ã®å¶çŽ
- äŒçµ±çãªãšã³ãžãã¢ãªã³ã°: ãã¶ã€ã³ ãã¿ãŒã³ã¯éåžžãWeb ãµãŒããŒãããŒã¿ããŒã¹ ã¯ãšãªãUI ã¬ã³ããªã³ã°ãªã©ã®ã¢ããªã±ãŒã·ã§ã³ã®ã¬ã€ãã³ã·ãšã¹ã«ãŒãããã«åãããŠæé©åãããŸãã
- AIãšã³ãžãã¢ãªã³ã°AIã«ãããããã©ãŒãã³ã¹èŠä»¶ã¯ ã¢ãã«æšè«ã®é
å»¶ã ã°ã©ãã£ãã¯ããã»ããµ å©çšãããã³ ã¡ã¢ãªã®æé©åãã¿ãŒã³ã¯æ¬¡ã®ãã®ã«å¯Ÿå¿ããå¿
èŠããããŸã:
- äžéçµæã®ãã£ãã·ã¥ åé·ãªèšç®ãåæžããŸã (ãã³ã¬ãŒã¿ãŸãã¯ãããã· ãã¿ãŒã³)ã
- ã·ã¹ãã è² è·ãŸãã¯ãªã¢ã«ã¿ã€ã å¶çŽã«åºã¥ããŠãã¬ã€ãã³ã·ãšç²ŸåºŠã®ãã©ã³ã¹ããšãããã«ã¢ã«ãŽãªãºã ãåçã«åãæ¿ããŸã (æŠç¥ãã¿ãŒã³)ã
3. ããŒã¿äžå¿ã®æ§è³ª
- äŒçµ±çãªãšã³ãžãã¢ãªã³ã°: ãã¿ãŒã³ã¯å€ãã®å Žåãåºå®ãããå ¥åºåæ§é (ãã©ãŒã ãREST API å¿çãªã©) ã§åäœããŸãã
- AIãšã³ãžãã¢ãªã³ã°: ãã¿ãŒã³ã¯åŠçããå¿
èŠããã ããŒã¿ã®å€åæ§ æ§é ãšèŠæš¡ã®äž¡é¢ã«ãããŠã以äžãå«ã¿ãŸãã
- ãªã¢ã«ã¿ã€ã ã·ã¹ãã çšã®ã¹ããªãŒãã³ã° ããŒã¿ã
- æè»ãªåŠçæé ãåãããã€ãã©ã€ã³ãå¿ èŠãšãããã«ãã¢ãŒãã« ããŒã¿ (ããã¹ããç»åããããªãªã©)ã
- å€ãã®å ŽåãBuilder ã Pipeline ãªã©ã®ãã¿ãŒã³ã䜿çšããŠãå¹ççãªååŠçãšæ¡åŒµãã€ãã©ã€ã³ãå¿ èŠãšããå€§èŠæš¡ãªããŒã¿ã»ããã
4. å®éšãšå®å®æ§
- äŒçµ±çãªãšã³ãžãã¢ãªã³ã°: ãã¿ãŒã³ã«ãã£ãŠäžè²«ããããã©ãŒãã³ã¹ãšä¿¡é Œæ§ãä¿èšŒããããå®å®ããäºæž¬å¯èœãªã·ã¹ãã ã®æ§ç¯ã«éç¹ã眮ãããŠããŸãã
- AIãšã³ãžãã¢ãªã³ã°: AIã¯ãŒã¯ãããŒã¯å€ãã®å Žå å®éšç ãããŠä»¥äžãå«ã¿ãŸã:
- ããŸããŸãªã¢ãã« ã¢ãŒããã¯ãã£ãŸãã¯ããŒã¿ååŠçææ³ãç¹°ãè¿ãå®è¡ããŸãã
- ã·ã¹ãã ã³ã³ããŒãã³ããåçã«æŽæ°ããŸã (äŸ: ã¢ãã«ã®åãã¬ãŒãã³ã°ãã¢ã«ãŽãªãºã ã®äº€æ)ã
- å€ãã®å ŽåãDecorator ã Factory ãªã©ã®æ¡åŒµå¯èœãªãã¿ãŒã³ã䜿çšããŠãçç£ãã€ãã©ã€ã³ãäžæããããšãªãæ¢åã®ã¯ãŒã¯ãããŒãæ¡åŒµããŸãã
äŸ:AI ã®ãã¡ã¯ããªãŒã¯ãã¢ãã«ãã€ã³ã¹ã¿ã³ã¹åããã ãã§ãªããäºåã«ããŒããããéã¿ãæ·»ä»ãããããªããã£ãã€ã¶ãŒãæ§æãããããã¬ãŒãã³ã° ã³ãŒã«ããã¯ããªã³ã¯ãããããããšããã¹ãŠåçã«å®è¡ããŸãã




