Artificial Intelligence
å°èŠæš¡èšèªã¢ãã«ã®åœ±é¿åã®å¢å€§

å ¬éæžã¿
2幎åon

å°ããªèšèªã¢ãã«ã®åºçŸ
æ¥éã«é²åãã人工ç¥èœã®äžçã§ã¯ãèšèªã¢ãã«ã®ãµã€ãºããã®æ©èœãšå矩ã§ããããšããããããŸãã GPT-4 ã®ãããªå€§èŠæš¡èšèªã¢ãã« (LLM) 㯠AI ã®äžçãæ¯é ããŠãããèªç¶èšèªã®çè§£ãšçæã«ãããŠé¡èãªèœåã瀺ããŠããŸãããããã埮åŠã§ã¯ãããéèŠãªå€åãé²è¡äžã§ãããã€ãŠã¯å€§èŠæš¡ãªèšèªã¢ãã«ã®åœ±ã«é ããŠããå°èŠæš¡ãªèšèªã¢ãã«ããããŸããŸãª AI ã¢ããªã±ãŒã·ã§ã³ã®åŒ·åãªããŒã«ãšããŠå°é ãã€ã€ãããŸãããã®å€æŽã¯ AI éçºã«ãããéèŠãªç¹ã瀺ããŠããã倧ããã»ã©åžžã«åªããŠãããšããé·å¹Žã®æŠå¿µã«çåãæããããŸãã
å€§èŠæš¡èšèªã¢ãã«ã®é²åãšéç
人éã®ãããªèšèªãçè§£ããŠçæã§ãã AI ã·ã¹ãã ã®éçºã¯ã䞻㫠LLM ã«çŠç¹ãåœãŠãŠããŸããããããã®ã¢ãã«ã¯ã翻蚳ãèŠçŽã質åå¿çãªã©ã®åéã§åªããŠãããå€ãã®å Žåãåæã®å°èŠæš¡ãªã¢ãã«ãäžåã£ãŠããŸãããã ããLLM ã®æåã«ã¯ä»£åã䌎ããŸããé«ããšãã«ã®ãŒæ¶è²»ã倧éã®ã¡ã¢ãªèŠä»¶ãããã³ããªãã®èšç®ã³ã¹ããæžå¿µãåŒãèµ·ãããŸãããããã®èª²é¡ã¯ããããã®ã¢ãã«ã®ãµã€ãºã®æ¡å€§ã«æ¯ã¹ãŠ GPU ã®é©æ°ã®ããŒã¹ãé ããŠããããšã«ãã£ãŠããã«æªåããŠãããã¹ã±ãŒã«ã¢ããã®äžéã®å¯èœæ§ã瀺åããŠããŸãã
ç ç©¶è ã¯ãç¹å®ã®ã·ããªãªã§ããå¹ççã§æ±çšæ§ã®é«ãä»£æ¿ææ®µãæäŸãããããå°ããªèšèªã¢ãã«ã«ãŸããŸã泚ç®ãéããŠããŸããããšãã°ãTurc ãã«ããç ç©¶ã (2019) ã¯ãLLM ããå°èŠæš¡ãªã¢ãã«ã«æœåºãããç¥èããå€§å¹ ã«åæžãããèšç®èŠæ±ã§åæ§ã®ããã©ãŒãã³ã¹ãçã¿åºãããšãå®èšŒããŸãããããã«ã転移åŠç¿ãªã©ã®æè¡ãé©çšããããšã§ããããã®ã¢ãã«ãç¹å®ã®ã¿ã¹ã¯ã«å¹æçã«é©å¿ã§ããããã«ãªããææ åæã翻蚳ãªã©ã®åéã§åçãŸãã¯ãã以äžã®çµæãéæã§ããããã«ãªããŸããã
æè¿ã®é²æ©ã«ãããããå°åã®ã¢ãã«ã®å¯èœæ§ã匷調ãããŠããŸãããã£ãŒããã€ã³ãã®ãã³ãã©ã ã¡ã¿ã®LLaMa ã¢ãã«ãStanford ã® AlpacaãStability AI ã® StableLM ã·ãªãŒãºãªã©ã泚ç®ãã¹ãäŸã§ãããããã®ã¢ãã«ã¯ããµã€ãºãå°ããã«ãããããããç¹å®ã®ã¿ã¹ã¯ã§ã¯ GPT-3.5 ã®ãããªå€§åã¢ãã«ã®ããã©ãŒãã³ã¹ã«å¹æµããããããã«ã¯ãããäžåããŸããããšãã°ãAlpaca ã¢ãã«ã¯ãGPT-3.5 ã¯ãšãªå¿çã«åºã¥ããŠåŸ®èª¿æŽãããšãã³ã¹ããå€§å¹ ã«åæžããªããããã©ãŒãã³ã¹ã«å¹æµããŸãããã®ãããªçºå±ã¯ãããå°èŠæš¡ãªã¢ãã«ã®å¹çãšæå¹æ§ã AI åéã§å®çãã€ã€ããããšã瀺åããŠããŸãã
æè¡ã®é²æ©ãšãã®åœ±é¿
å°èŠæš¡èšèªã¢ãã«éçºã«ãããæ°ããææ³
æè¿ã®ç ç©¶ã§ã¯ãããå°ããªèšèªã¢ãã«ã®ããã©ãŒãã³ã¹ãåäžãããããã€ãã®é©æ°çãªæè¡ãæããã«ãªããŸããã Google ã® UL2R ããã³ Flan ã¢ãããŒãã¯ãã®ä»£è¡šçãªäŸã§ãã UL2R (ãUltra Lightweight 2 Repairã) ã§ã¯ãç¶ç¶çãªäºåãã¬ãŒãã³ã°ã«ãã€ãºé€å»ç®æšã®æ··åãå°å ¥ããããŸããŸãªã¿ã¹ã¯ã«ããã£ãŠã¢ãã«ã®ããã©ãŒãã³ã¹ãåäžãããŸããäžæ¹ãFlan ã§ã¯ãæç€ºãšããŠè¡šçŸãããå¹ åºãã¿ã¹ã¯ã«åºã¥ããŠã¢ãã«ã埮調æŽããããã©ãŒãã³ã¹ãšäœ¿ããããã®äž¡æ¹ãåäžãããŸãã
ããã«ãYao Fuãã®è«æãã¯ãé©åã«ãã¬ãŒãã³ã°ãã埮調æŽãããå Žåãããå°ããªã¢ãã«ãæ°åŠçæšè«ãªã©ã®ç¹å®ã®ã¿ã¹ã¯ã§åªããŠããããšã瀺ããŠããŸãããããã®çºèŠã¯ããã倧ããªã¢ãã«ã®äžè¬åèœåã«ææŠãããç¹æ®ãªã¢ããªã±ãŒã·ã§ã³ã«ãããããå°ããªã¢ãã«ã®å¯èœæ§ã匷調ããŠããŸãã
å¹ççãªããŒã¿æŽ»çšã®éèŠæ§
ããŒã¿ã®å¹ççãªå©çšããå°èŠæš¡èšèªã¢ãã«ã®é åã«ãããéèŠãªããŒããšããŠæµ®äžããŠããŸããçŽ "å°èŠæš¡ãªèšèªã¢ãã«ãå°æ°åã®åŠç¿è ã§ãããã£ã¢ã»ã·ãã¯ãèãã¯ãå°ããªã¢ãã«ã®ããã©ãŒãã³ã¹ãåäžãããããã«ãäžåè¡¡ãªããŒã¿ã»ãããšçµã¿åãããç¹æ®ãªãã¹ãã³ã°ææ³ãææ¡ããŠããŸãããã®ãããªæŠç¥ã¯ãå°ããªèšèªã¢ãã«ã®æ©èœãæå€§åããããã®é©æ°çãªã¢ãããŒãããŸããŸãéèŠèŠãããŠããããšãæµ®ã圫ãã«ããŠããŸãã
ããå°ããèšèªã¢ãã«ã®å©ç¹
ããå°ããªèšèªã¢ãã«ã®é åã¯ããã®å¹çæ§ãšå€çšéæ§ã«ãããŸãããã¬ãŒãã³ã°ãšæšè«æéãççž®ãããäºé žåççŽ ãšæ°Žã®æåºéãåæžãããæºåž¯é»è©±ãªã©ã®ãªãœãŒã¹ã«å¶çŽã®ããããã€ã¹ãžã®å°å ¥ã«ããé©ããŠããŸããããŸããŸãªããã€ã¹ã«ããã AI ã®ã¢ã¯ã»ã·ããªãã£ãšããã©ãŒãã³ã¹ãåªå ããæ¥çã§ã¯ããã®é©å¿æ§ããŸããŸãéèŠã«ãªã£ãŠããŸãã
æ¥çã®ã€ãããŒã·ã§ã³ãšçºå±
ããå°åã§å¹ççãªã¢ãã«ãžã®æ¥çã®ç§»è¡ã¯ãæè¿ã®éçºã«ãã£ãŠäŸèšŒãããŠããŸãã ãã¹ãã©ã«ã®ãã¹ãã©ã« 8x7Bãå°éå®¶ã®ãŸã°ããªæ··åã¢ãã«ãããã³ Microsoft ã® Phi-2 ã¯ããã®åéã«ãããç»æçãªææã§ãã Mixtral 8x7B ã¯ããµã€ãºãå°ããã«ãããããããäžéšã®ãã³ãããŒã¯ã§ã¯ GPT-3.5 ã®å質ã«å¹æµããŸãã Phi-2 ã¯ããã«äžæ©é²ãã§ãããã 2.7 åã®ãã©ã¡ãŒã¿ãæã€æºåž¯é»è©±äžã§å®è¡ãããŸãããããã®ã¢ãã«ã¯ãããå°ãªããªãœãŒã¹ã§ããå€ãã®ææãéæããããšã«æ¥çããŸããŸã泚ç®ããŠããããšãæµ®ã圫ãã«ããŠããŸãã
Microsoftã® ãªã«ã« 2 ã¯ãã®åŸåãããã«ç€ºããŠããŸãããªãªãžãã«ã® Orca ã¢ãã«ãåºã«ããŠãOrca 2 ã¯å°ããªèšèªã¢ãã«ã®æšè«æ©èœã匷åããAI ç ç©¶ã®éçãæŒãåºããŸãã
èŠçŽãããšãå°åèšèªã¢ãã«ã®å°é ã¯ãAI ç°å¢ã«ããããã©ãã€ã ã·ããã衚ããŠããŸãããããã®ã¢ãã«ãé²åãç¶ãããã®æ©èœãå®èšŒããã«ã€ããŠãå€§èŠæš¡ãªã¢ãã«ã®åªäœæ§ã«ææŠããã ãã§ãªããAI ã®åéã§äœãå¯èœãªã®ãã«ã€ããŠã®ç§ãã¡ã®çè§£ãåæ§ç¯ããŠããŸãã
å°èŠæš¡èšèªã¢ãã«ãæ¡çšããåæ©
Small Language Model (SLM) ãžã®é¢å¿ã®é«ãŸãã¯ãäž»ã«å¹çãã³ã¹ããã«ã¹ã¿ãã€ãºæ§ãšãã£ãããã€ãã®éèŠãªèŠå ã«ãã£ãŠæšé²ãããŠããŸãããããã®åŽé¢ã«ãããSLM ã¯ããŸããŸãªã¢ããªã±ãŒã·ã§ã³ã«ãããŠããã倧ããªå¯Ÿå¿ç©ã«ä»£ããé åçãªä»£æ¿ææ®µãšããŠäœçœ®ä»ããããŸãã
å¹ç: éèŠãªæšé²å
SLM ã¯ãã©ã¡ãŒã¿ãŒãå°ãªããããå€§èŠæš¡ãªã¢ãã«ãšæ¯èŒããŠå€§å¹ ãªèšç®å¹çãå®çŸããŸãããããã®å¹çã«ã¯ãæšè«é床ã®é«éåãã¡ã¢ãªãšã¹ãã¬ãŒãžã®èŠä»¶ã®åæžããã¬ãŒãã³ã°ã«å¿ èŠãªããŒã¿ã®åæžãªã©ãå«ãŸããŸãããã®çµæããããã®ã¢ãã«ã¯é«éã«ãªãã ãã§ãªãããªãœãŒã¹å¹çãåäžããŸããããã¯ãé床ãšãªãœãŒã¹ã®äœ¿çšçãéèŠãªã¢ããªã±ãŒã·ã§ã³ã§ç¹ã«æçã§ãã
è²»çšå¯Ÿå¹æ
GPT-4 ã®ãããªå€§èŠæš¡èšèªã¢ãã« (LLM) ã®ãã¬ãŒãã³ã°ãšãããã€ã«å¿ èŠãªå€§éã®èšç®ãªãœãŒã¹ã¯ãããªãã®ã³ã¹ãã«ã€ãªãããŸããå¯Ÿç §çã«ãSLM ã¯ãããåºãå©çšå¯èœãªããŒããŠã§ã¢äžã§ãã¬ãŒãã³ã°ããã³å®è¡ã§ãããããããå¹ åºãããžãã¹ã«ãšã£ãŠå©çšãããããçµæžçã«å®è¡å¯èœã«ãªããŸãããªãœãŒã¹èŠä»¶ã®åæžã«ãããã¢ãã«ãäœé»åããã€ã¹ã§å¹ççã«åäœããå¿ èŠããããšããž ã³ã³ãã¥ãŒãã£ã³ã°ã®å¯èœæ§ãåºãããŸãã
ã«ã¹ã¿ãã€ãºå¯èœæ§: æŠç¥çå©ç¹
LLM ã«å¯Ÿãã SLM ã®æãéèŠãªå©ç¹ã® 1 ã€ã¯ãã«ã¹ã¿ãã€ãºå¯èœã§ããããšã§ããåºç¯ã ãæ±çšçãªæ©èœãæäŸãã LLM ãšã¯ç°ãªããSLM ã¯ç¹å®ã®ãã¡ã€ã³ãã¢ããªã±ãŒã·ã§ã³ã«åãããŠã«ã¹ã¿ãã€ãºã§ããŸãããã®é©å¿æ§ã¯ãå埩ãµã€ã¯ã«ãéããªããç¹æ®ãªã¿ã¹ã¯ã«åãããŠã¢ãã«ã埮調æŽã§ããæ©èœã«ãã£ãŠä¿é²ãããŸãããã®æè»æ§ã«ãããSLM ã¯ãäžè¬çãªæ©èœãããç¹å®ã®ã¿ãŒã²ãããçµã£ãããã©ãŒãã³ã¹ã®äŸ¡å€ãé«ãããããªã¢ããªã±ãŒã·ã§ã³ã«ç¹ã«åœ¹ç«ã¡ãŸãã
æ©èœãæãªãããšãªãèšèªã¢ãã«ãã¹ã±ãŒã«ããŠã³ãã
æ©èœãç ç²ã«ããããšãªãèšèªã¢ãã«ã®ãµã€ãºãæå°éã«æãããšããæ¢æ±ã¯ãçŸåšã® AI ç ç©¶ã®äžå¿çãªããŒãã§ããåé¡ã¯ãèšèªã¢ãã«ã®æå¹æ§ãç¶æããªãããèšèªã¢ãã«ãã©ãã ãå°ããã§ããããšããããšã§ãã
ã¢ãã«ã¹ã±ãŒã«ã®äžéã®èšå®
æè¿ã®ç ç©¶ã§ã¯ã1 äžãã 10 äžãšããå°ãªããã©ã¡ãŒã¿ãæã€ã¢ãã«ã§ãåºæ¬çãªèšèªèœåãç²åŸã§ããããšã瀺ãããŠããŸããããšãã°ããã©ã¡ãŒã¿ãããã 8 äžåã®ã¢ãã«ã¯ã59 幎㮠GLUE ãã³ãããŒã¯ã§çŽ 2023% ã®ç²ŸåºŠãéæããŸããããããã®çµæã¯ãæ¯èŒçå°ããªã¢ãã«ã§ãã£ãŠããç¹å®ã®èšèªåŠçã¿ã¹ã¯ã§ã¯å¹æçã§ããå¯èœæ§ãããããšã瀺åããŠããŸãã
ããã©ãŒãã³ã¹ã¯ããã©ã¡ãŒã¿ã 200 åãã 300 åçšåºŠã®ç¹å®ã®èŠæš¡ã«éãããšé æã¡ã«ãªãããã§ããããã¯ããµã€ãºãããã«å€§ãããªããšå©çãæžå°ããããšã瀺ããŠããŸãããã®ãã©ããŒã¯ãåçšå±éå¯èœãª SLM ã«ãšã£ãŠã¹ã€ãŒã ã¹ãããã§ãããæ©èœãšå¹çã®ãã©ã³ã¹ãåããŠããŸãã
å¹ççãªå°èŠæš¡èšèªã¢ãã«ã®ãã¬ãŒãã³ã°
çç·Žãã SLM ãéçºããã«ã¯ãããã€ãã®ãã¬ãŒãã³ã°æ¹æ³ã極ããŠéèŠã§ãã転移åŠç¿ã«ãããã¢ãã«ã¯äºåãã¬ãŒãã³ã°äžã«å¹ åºãã³ã³ããã³ã·ãŒãååŸãããã®åŸãç¹å®ã®ã¢ããªã±ãŒã·ã§ã³åãã«æ¹è¯ããããšãã§ããŸããèªå·±æåž«ããåŠç¿ã¯ãå°èŠæš¡ãªã¢ãã«ã«ç¹ã«å¹æçã§ãåããŒã¿äŸããæ·±ãäžè¬åããããšã匷å¶ãããã¬ãŒãã³ã°äžã«ã¢ãã«ã®èœåãæå€§éã«æŽ»çšããŸãã
ã¢ãŒããã¯ãã£ã®éžæãéèŠãªåœ¹å²ãæãããŸããããšãã°ãå¹ççãªãã©ã³ã¹ãã©ãŒããŒã¯ãå€§å¹ ã«å°ãªããã©ã¡ãŒã¿ã§ããŒã¹ã©ã€ã³ ã¢ãã«ãšåçã®ããã©ãŒãã³ã¹ãå®çŸããŸãããããã®æè¡ãçµã¿åãããããšã§ãããŸããŸãªã¢ããªã±ãŒã·ã§ã³ã«é©ãããå°èŠæš¡ãªããæèœãªèšèªã¢ãã«ã®äœæãå¯èœã«ãªããŸãã
ãã®åéã«ãããæè¿ã®é²æ©ã¯ããæ®µéçã«èžçãããã®ä»çµã¿ããã®æ°ããã¢ãããŒãã«ãããããŒã¿èŠä»¶ã軜æžãããããã©ãŒãã³ã¹ãåäžããŸãã
段éçãªèžçæ³ã§ã¯ãLLM ããã€ãºã®å€ãã©ãã«ã®ãœãŒã¹ãšããŠã ãã§ãªããæšè«ã§ãããšãŒãžã§ã³ããšããŠãå©çšããŸãããã®æ¹æ³ã§ã¯ãLLM ã«ãã£ãŠçæãããèªç¶èšèªã®çè«çæ ¹æ ãæŽ»çšããŠããã®äºæž¬ãæ£åœåããå°èŠæš¡ã¢ãã«ããã¬ãŒãã³ã°ããããã®è¿œå ã®ç£èŠãšããŠäœ¿çšããŸãããããã®çè«çæ ¹æ ãçµã¿èŸŒãããšã§ãå°èŠæš¡ã¢ãã«ã¯é¢é£ããã¿ã¹ã¯ã®ç¥èãããå¹ççã«åŠç¿ã§ããããã«ãªããå€§èŠæš¡ãªãã¬ãŒãã³ã° ããŒã¿ã®å¿ èŠæ§ã軜æžãããŸãã
éçºè ãã¬ãŒã ã¯ãŒã¯ãšãã¡ã€ã³åºæã®ã¢ãã«
Hugging Face HubãAnthropic ClaudeãCohere for AIãAssembler ãªã©ã®ãã¬ãŒã ã¯ãŒã¯ã«ãããéçºè ã¯ã«ã¹ã¿ãã€ãºããã SLM ãç°¡åã«äœæã§ããŸãããããã®ãã©ãããã©ãŒã ã¯ãSLM ã®ãã¬ãŒãã³ã°ãå°å ¥ãç£èŠã®ããã®ããŒã«ãæäŸããããå¹ åºãæ¥çã§èšèª AI ãå©çšã§ããããã«ããŸãã
ãã¡ã€ã³åºæã® SLM ã¯ãæ£ç¢ºæ§ãæ©å¯æ§ãå¿çæ§ãæéèŠèŠãããéèãªã©ã®æ¥çã§ç¹ã«æå©ã§ãããããã®ã¢ãã«ã¯ç¹å®ã®ã¿ã¹ã¯ã«åãããŠèª¿æŽã§ããå€ãã®å Žåãå€§èŠæš¡ãªã¢ãã«ãããå¹ççã§å®å šã§ãã
ä»åŸã®å±æ
SLM ã®æ¢æ±ã¯ãåãªãæè¡çãªåãçµã¿ã§ã¯ãªããããæç¶å¯èœã§å¹ççã§ã«ã¹ã¿ãã€ãºå¯èœãª AI ãœãªã¥ãŒã·ã§ã³ã«åããæŠç¥çãªåãçµã¿ã§ããããŸãã AI ãé²åãç¶ããã«ã€ããŠãããå°åã§ããç¹åããã¢ãã«ãžã®æ³šç®ãé«ãŸãå¯èœæ§ããããAI ãã¯ãããžãŒã®éçºãšå¿çšã«ãããŠæ°ããªæ©äŒãšèª²é¡ãããããããŸãã
ç§ã¯éå» 50 幎éãæ©æ¢°åŠç¿ã𿷱局åŠç¿ã®é åçãªäžçã«æ²¡é ããŠããŸããã ç§ã®æ ç±ãšå°éç¥èã«ãããç¹ã« AI/ML ã«éç¹ã眮ãã XNUMX ãè¶ ãã倿§ãªãœãããŠã§ã¢ ãšã³ãžãã¢ãªã³ã° ãããžã§ã¯ãã«è²¢ç®ããŠããŸããã ç§ã®ç¶ç¶çãªå¥œå¥å¿ã¯ãç§ãããã«æ¢æ±ããããšæã£ãŠããåéã§ããèªç¶èšèªåŠçã«ãåŒãå¯ããããŸããã
ããªãã¯å¥œããããããŸãã
-
AIãšãŒãžã§ã³ã vs å€§èŠæš¡ã¢ãã«ïŒããŒã ããŒã¹ã®ã¢ãããŒããå€§èŠæš¡ã·ã¹ãã ãããåªããŠããçç±
-
DeepCoder-14B: éçºè ã®çç£æ§ãšã€ãããŒã·ã§ã³ãé«ãããªãŒãã³ãœãŒã¹AIã¢ãã«
-
AIã«ãããã©ãã£ãã¯ã¯ãŒãã¿ãŒåŸã®åºåã®æªæ¥
-
Phi-4-Reasoningãã倧ããã»ã©è¯ãããšããç¥è©±ã«ææŠããAIæšè«ãåå®çŸ©ããæ¹æ³
-
ã¢ãã«ã³ã³ããã¹ããããã³ã«ïŒMCPïŒãããŒã«ãšããŒã¿ãšã®AIæ¥ç¶ãæšæºåããæ¹æ³
-
å°åæšè«ã¢ãã«ã®å°é : å°å AI 㯠GPT ã¬ãã«ã®æšè«ã«å¹æµã§ããã?