Suivez nous sur

Le chemin vers la maturité de l'IA - Rapport LXT 2023

Intelligence Artificielle

Le chemin vers la maturité de l'IA - Rapport LXT 2023

mm
Chemin vers la maturité de l'IA en 2023

Aujourd’hui, les entreprises axées sur l’innovation investissent des ressources importantes dans les systèmes d’intelligence artificielle (IA) pour faire progresser leur parcours de maturité en matière d’IA. Selon IDC, les dépenses mondiales consacrées aux systèmes centrés sur l’IA devraient dépasser 300 milliards de dollars d’ici 2026, contre 118 milliards de dollars en 2022.

Dans le passé, les systèmes d'IA ont échoué plus fréquemment en raison d'un manque de maturité des processus. À propos 60 à 80 % des projets d'IA échouaient en raison d'une mauvaise planification, d'un manque d'expertise, d'une gestion inadéquate des données ou de problèmes d'éthique et d'équité. Mais, d'année en année, ce nombre s'améliore.

Aujourd'hui, en moyenne, le taux d'Ă©chec des projets d'IA est descendu Ă  46 %, selon le dernier rapport LXT. La probabilitĂ© d'Ă©chec de l'IA se rĂ©duit encore Ă  36 % Ă  mesure qu'une entreprise progresse dans son parcours de maturitĂ© de l'IA.

Explorons plus en détail le cheminement d'une organisation vers la maturité de l'IA, les différents modèles et cadres qu'elle peut utiliser, ainsi que les principaux moteurs commerciaux pour la construction d'une stratégie efficace. Stratégie de l'IA.

Qu'est-ce que la maturitĂ© de l'IA ?

La maturité de l'IA fait référence au niveau d'avancement et de sophistication qu'une entreprise a atteint dans l'adoption, la mise en œuvre et la mise à l'échelle de technologies basées sur l'IA pour améliorer ses processus, produits ou services commerciaux.

Selon le Rapport de maturitĂ© LXT AI 2023, 48 % des moyennes et grandes entreprises amĂ©ricaines ont atteint des niveaux plus Ă©levĂ©s de maturitĂ© de l'IA (voir ci-dessous), ce qui reprĂ©sente une augmentation de 8 % par rapport aux rĂ©sultats de l'enquĂŞte de l'annĂ©e prĂ©cĂ©dente, tandis que 52 % des organisations expĂ©rimentent activement l'IA.

Le rapport suggère que les travaux les plus prometteurs ont été réalisés dans le Traitement du langage naturel (PNL) et reconnaissance de la parole domaines - sous-catégories de l'IA - car ils avaient le plus grand nombre de solutions déployées dans tous les secteurs.

De plus, l'industrie de la fabrication et de la chaĂ®ne d'approvisionnement a le taux d'Ă©chec des projets d'IA le plus bas (29 %), tandis que la vente au dĂ©tail et le commerce Ă©lectronique ont le taux le plus Ă©levĂ© (52 %).

Explorer différents modèles de maturité de l'IA

Habituellement, les organisations axées sur l'IA développent des modèles de maturité de l'IA adaptés à leurs besoins commerciaux. Cependant, l'idée sous-jacente de maturité reste cohérente dans tous les modèles, axée sur le développement de capacités liées à l'IA pour atteindre des performances commerciales optimales.

Certains modèles de maturité importants ont été développés par Gartner, IBMet Microsoft. Ils peuvent servir de guide aux organisations dans leur parcours d'adoption de l'IA.

Explorons brièvement les modèles de maturité de l'IA de Gartner et IBM ci-dessous.

Modèle de maturité de l'IA de Gartner

Gartner propose un modèle de maturité de l'IA à 5 niveaux que les entreprises peuvent utiliser pour évaluer leur niveau de maturité. Discutons-en ci-dessous.

Illustration du modèle de maturité Gartner AI. Source: Rapport LXT 2023

  • Niveau 1 – Sensibilisation : Les organisations Ă  ce niveau commencent Ă  discuter des solutions d'IA possibles. Mais, aucun projet pilote ou expĂ©rimentation n'est en cours pour tester la viabilitĂ© de ces solutions Ă  ce niveau.
  • Niveau 2 – Actif : Les organisations en sont aux premières Ă©tapes de l'expĂ©rimentation de l'IA et des projets pilotes.
  • Niveau 3 – OpĂ©rationnel : Les organisations Ă  ce niveau ont pris des mesures concrètes vers l'adoption de l'IA, notamment en passant au moins un projet d'IA en production.
  • Niveau 4 – SystĂ©matique : Les organisations de ce niveau utilisent l'IA pour la plupart de leurs processus numĂ©riques. De plus, les applications alimentĂ©es par l'IA facilitent les interactions productives Ă  l'intĂ©rieur et Ă  l'extĂ©rieur de l'organisation.
  • Niveau 5 – Transformationnel : Les organisations ont adoptĂ© l'IA comme partie intĂ©grante de leurs flux de travail d'entreprise.

Selon ce modèle, les entreprises commencent à atteindre la maturité de l'IA à partir du niveau 3.

Cadre de maturité IBM AI

IBM a en rĂ©ponse IBM possède une terminologie et des critères uniques pour Ă©valuer la maturitĂ© des solutions d'IA. Les trois phases du cadre de maturitĂ© de l'IA d'IBM comprennent :

Phases du cadre de maturité IBM AI

  • Argent: Ă€ ce niveau de capacitĂ© d'IA, les entreprises explorent les outils et technologies pertinents pour se prĂ©parer Ă  l'adoption de l'IA. Cela inclut Ă©galement la comprĂ©hension de l'impact de l'IA sur les entreprises, la prĂ©paration des donnĂ©es et d'autres facteurs commerciaux liĂ©s Ă  l'IA.
  • Or: Ă€ ce niveau, les organisations obtiennent un avantage concurrentiel en fournissant un rĂ©sultat commercial significatif grâce Ă  l'IA. Cette capacitĂ© d'IA fournit des recommandations et des explications Ă©tayĂ©es par des donnĂ©es, est utilisable par les utilisateurs du secteur d'activitĂ© et dĂ©montre une bonne hygiène et automatisation des donnĂ©es.
  • platine: Cette capacitĂ© d'IA sophistiquĂ©e est durable pour les flux de travail critiques. Il s'adapte aux donnĂ©es utilisateur entrantes et fournit des explications claires sur les rĂ©sultats de l'IA. De plus, de solides mesures de gestion des donnĂ©es et de gouvernance sont en place pour soutenir la prise de dĂ©cision automatisĂ©e.

Principaux obstacles sur la voie de la maturité de l'IA

Les organisations font face Ă  plusieurs dĂ©fis pour atteindre la maturitĂ©. Le Rapport LXT 2023 identifie 11 obstacles, comme le montre le graphique ci-dessous. Discutons-en quelques-uns ici.

Graphique des défis de la maturité de l'IA. Source: Rapport LXT 2023

1. Intégration de l'IA à la technologie existante

Environ 54 % des organisations sont confrontées au défi d'intégrer la technologie héritée ou existante dans les systèmes d'IA, ce qui en fait le plus grand obstacle à l'atteinte de la maturité.

2. Qualité des données

Des données de formation de haute qualité sont essentielles pour construire des systèmes d'IA précis. Cependant, la collecte de données de haute qualité reste un grand défi pour atteindre la maturité. Le rapport révèle que 87 % des entreprises sont prêtes à payer plus pour acquérir des données de formation de haute qualité.

3. Déficit de compétences

Sans les compĂ©tences et les ressources adĂ©quates, les organisations ont du mal Ă  crĂ©er des cas d'utilisation rĂ©ussis de l'IA. En fait, 31 % des organisations sont confrontĂ©es Ă  un manque de talents qualifiĂ©s pour soutenir leurs initiatives d'IA et atteindre la maturitĂ©.

4. Stratégie d'IA faible

La plupart des IA que nous observons dans les systèmes du monde réel peuvent être classées comme faibles ou étroites. C'est une IA qui peut effectuer un ensemble fini de tâches pour lesquelles elle est entraînée. Environ 20 % des organisations n'ont pas de stratégie globale d'IA.

Pour surmonter ce défi, les entreprises doivent clairement définir et documenter leurs objectifs d'IA, investir dans des données de qualité et choisir les bons modèles pour chaque tâche.

Principaux moteurs commerciaux pour faire progresser vos stratégies d'IA

Maturité LXT Le rapport identifie dix moteurs commerciaux clés pour l'IA, comme indiqué dans le graphique ci-dessous. Discutons-en quelques-uns ici.

Une illustration des principaux moteurs commerciaux de l'IA. Source: Rapport LXT 2023

1. Agilité commerciale

L'agilitĂ© commerciale fait rĂ©fĂ©rence Ă  la rapiditĂ© avec laquelle une organisation peut s'adapter Ă  l'Ă©volution des tendances et des opportunitĂ©s numĂ©riques en utilisant des solutions commerciales innovantes. Il reste le principal moteur des stratĂ©gies d'IA pour environ 49 % des organisations.

L'IA peut aider les entreprises à atteindre l'agilité commerciale en permettant une prise de décision plus rapide et plus précise, en automatisant les tâches répétitives et en améliorant l'efficacité opérationnelle.

2. Anticiper les besoins des clients

Environ 46 % des organisations considèrent l'anticipation des besoins des clients comme l'un des principaux moteurs commerciaux des stratégies d'IA. En utilisant l'IA pour analyser les données clients, les entreprises peuvent obtenir des informations sur le comportement, les préférences et les besoins des clients, ce qui leur permet d'adapter leurs produits et services pour mieux répondre aux attentes des clients.

3. Avantage concurrentiel

L'avantage concurrentiel permet aux entreprises de se différencier de leurs concurrents et d'acquérir un avantage sur le marché. C'est un moteur clé des stratégies d'IA, selon 41 % des organisations.

4. Rationaliser la prise de décision

La prise de dĂ©cision automatisĂ©e basĂ©e sur l'IA peut rĂ©duire considĂ©rablement le temps nĂ©cessaire pour prendre des dĂ©cisions critiques fondĂ©es sur des donnĂ©es. C'est pourquoi environ 42 % des organisations considèrent la rationalisation de la prise de dĂ©cision comme un moteur commercial majeur pour les stratĂ©gies d'IA.

5. Développement de produits

Après avoir Ă©tĂ© reconnu comme le principal moteur commercial des stratĂ©gies d'IA en 2021, le dĂ©veloppement de produits innovants est tombĂ© Ă  la septième place, 39 % des organisations le considĂ©rant comme un moteur commercial en 2023.

Cela montre que l'applicabilité de l'IA dans les processus métier ne repose pas entièrement sur la qualité du produit. D'autres aspects commerciaux tels qu'une résilience élevée, la durabilité et un délai de mise sur le marché rapide sont essentiels au succès de l'entreprise.

Pour plus d'informations sur les dernières tendances et technologies en matière d'intelligence artificielle, visitez unir.ai.

Haziqa est un Data Scientist avec une vaste expérience dans la rédaction de contenu technique pour les entreprises d'IA et de SaaS.