Artificial Intelligence
2024 幎ã®ã³ã³ãã¥ãŒã¿ãŒ ããžã§ã³ã«é¢ããæç®ã®ãã¬ã³ãã«é¢ããå人çãªèŠè§£

ç§ã¯çŽ 5 幎éãArxiv ããã®ä»ã®å Žæã§ã³ã³ãã¥ãŒã¿ãŒ ããžã§ã³ (CV) ãšç»ååæã®ç ç©¶çŸå Žãç¶ç¶çã«è¿œè·¡ããŠããŸããããæéã®çµéãšãšãã«åŸåãæããã«ãªããæ¯å¹Žæ°ããæ¹åã«å€åããŠããŸãã
ããã§ã2024幎ãçµããã«è¿ã¥ãã«ã€ããŠãã³ã³ãã¥ãŒã¿ããžã§ã³ãšãã¿ãŒã³èªèã®Arxivæçš¿ã«ãããããã€ãã®æ°ããããŸãã¯é²åããç¹åŸŽãèŠãŠã¿ãã®ãé©åã ãšæããŸããã ãããã®èгå¯ã¯ãçŸå ŽãäœçŸæéãç ç©¶ããçµæã«åºã¥ããã®ã§ããããããŸã§ãéžè©±çãªãã®ã§ãã
æ±ã¢ãžã¢ã®ç¶ç¶çãªå°é
2023 幎æ«ãŸã§ã«ãç§ã¯ãé³å£°åæãã«ããŽãªã®æç®ã®å€§éšåãäžåœãæ±ã¢ãžã¢ã®ä»ã®å°åããåºãŠããããšã«æ°ä»ããŸããã2024 幎æ«ã«ã¯ããããç»åããããªã®åæç ç©¶ã®åéã«ãåœãŠã¯ãŸãããšãïŒéžè©±çã«ïŒèгå¯ããªããã°ãªããŸããã
ããã¯ãäžåœãšè¿é£è«žåœãå¿ ãããåžžã«æé«ã®ææãåºããŠãããšããããšãæå³ãããã®ã§ã¯ãªãïŒç¢ºãã«ã å察ã®èšŒæ ãŸããäžåœã§ã¯ïŒè¥¿æŽãšåæ§ïŒæãè峿·±ã匷åãªæ°ããéçºã·ã¹ãã ã®ããã€ããç¬å çã§ãããç ç©¶æç®ããé€å€ãããå¯èœæ§ãé«ãããšãèæ ®ãããŠããŸããã
ãããããã®ç¹ã§ã¯æ±ã¢ãžã¢ãéçã«è¥¿åŽãäžåã£ãŠããããšã瀺åããŠããããããã©ãã ã䟡å€ããããã¯ã ãšãžãœã³æµã®ç²ã匷ãéåžžã¯å¹æããªãããšã倿ããŠãã 解決å°é£ãªé害ã«çŽé¢ããŠ.
å š å€ãã®ãã®ãããªé害 çæ AI ã§ã¯ãã©ããæ¢åã®ã¢ãŒããã¯ãã£ã«å¯Ÿå¿ããããšã§è§£æ±ºã§ããã©ãããŒããã忀èšããå¿ èŠãããã®ãââãç¥ãããšã¯å®¹æã§ã¯ãããŸããã
æ±ã¢ãžã¢ã®ç ç©¶è ãã³ã³ãã¥ãŒã¿ãŒ ããžã§ã³ã«é¢ããè«æãããå€ãçºè¡šããŠããããã§ãããç§ã¯ããã©ã³ã±ã³ã·ã¥ã¿ã€ã³ãã¹ã¿ã€ã«ã®ãããžã§ã¯ããã€ãŸããéãããã¢ãŒããã¯ãã£äžã®æ°èŠæ§ (ãŸãã¯åã«ç°ãªãã¿ã€ãã®ããŒã¿) ã远å ããªããã以åã®ç ç©¶ãèåããåãçµã¿ã®é »åºŠãå¢å ããŠããããšã«æ°ã¥ããŸããã
ä»å¹Žã¯ãæ±ã¢ãžã¢ïŒäž»ã«äžåœãŸãã¯äžåœãé¢äžããå ±åç ç©¶ïŒããã®å¿åãã¯ããã«å€ããå®åéèŠã§ã¯ãªãå®å¡éèŠã®ããã§ããã§ã«å¿åè æ°ãå€ãåéã§ä¿¡å·å¯Ÿé鳿¯ãå€§å¹ ã«å¢å ããŸããã
åæã«ã2024幎ã«ã¯æ±ã¢ãžã¢ã®æ°èããŸããŸãå€ããªããç§ã®æ³šç®ãšè³è³ãéããŠããŸããã§ããããããããã¹ãŠæ°åã®ã²ãŒã ã§ãããªãã°ã倱æããŠããããã§ã¯ãããŸããããå®ãããããŸããã
æåºéã®å¢å
2024 幎ã«ã¯ããã¹ãŠã®çºè¡åœã«ãããè«æã®éãæããã«å¢å ããŸããã
æã人æ°ã®ããåºçæ¥ã¯å¹ŽéãéããŠå€ãããŸããçŸåšã®ãšããç«ææ¥ã§ãã³ã³ãã¥ãŒã¿ãŒ ããžã§ã³ãšãã¿ãŒã³èªèã»ã¯ã·ã§ã³ãžã®æçš¿æ°ã¯ãããŒã¯æé (300 æïœ350 æãš XNUMX æïœXNUMX æãã€ãŸãããããäŒè°ã·ãŒãºã³ãšã幎éå²ãåœãŠç· ãåããã·ãŒãºã³) ã«ã¯ XNUMX æ¥ã§çŽ XNUMXïœXNUMX ä»¶ã«ãªãããšããããããŸãã
ç§ã®çµéšä»¥å€ã«ããArxivèªäœã 2024幎XNUMXæã®å¿åä»¶æ°ãé廿é«åèš 6000 ä»¶ã®æ°èŠæçš¿ããããã³ã³ãã¥ãŒã¿ãŒ ããžã§ã³ ã»ã¯ã·ã§ã³ã¯æ©æ¢°åŠç¿ã«æ¬¡ãã§ XNUMX çªç®ã«å€ãæçš¿ãããã»ã¯ã·ã§ã³ãšãªããŸããã
ãã ããArxiv ã®æ©æ¢°åŠç¿ã»ã¯ã·ã§ã³ã¯ã远å ããŸãã¯éçŽãããã¹ãŒããŒã«ããŽãªãšããŠäœ¿çšãããããšãå€ããããã³ã³ãã¥ãŒã¿ãŒããžã§ã³ãšãã¿ãŒã³èªèãå®éã«ã¯æãå€ãæçš¿ãããŠãã Arxiv ã«ããŽãªã§ãããšèããããŸãã
Arxivã® ç¬èªã®çµ±èš 確ãã«ãã³ã³ãã¥ãŒã¿ãµã€ãšã³ã¹ãå¿åäœåæ°ã§æããã«ããããå ããŠããŸãã

éå» 5 幎éãArxiv ã®æçš¿çµ±èšã§ã¯ã³ã³ãã¥ãŒã¿ãŒ ãµã€ãšã³ã¹ (CS) ãäž»æµã§ããã åºå ž: https://info.arxiv.org/about/reports/submission_category_by_year.html
ã¹ã¿ã³ãã©ãŒã倧åŠã® 2024AIã€ã³ããã¯ã¹ã¯ãææ°ã®çµ±èšããŸã å ±åã§ããŠããªããã®ã®ãè¿å¹Žã®æ©æ¢°åŠç¿ã«é¢ããåŠè¡è«æã®æåºæ°ã®é¡èãªå¢å ã匷調ããŠããã

2024å¹Žã®æ°åã¯å ¥æã§ããªããã®ã®ãã¹ã¿ã³ãã©ãŒã倧åŠã®å ±åæžã¯æ©æ¢°åŠç¿è«æã®æçš¿æ°ãåçã«å¢å ããŠããããšã瀺ããŠããŸãã åºå ž: https://aiindex.stanford.edu/wp-content/uploads/2024/04/HAI_AI-Index-Report-2024_Chapter1.pdf
æ®å>ã¡ãã·ã¥ãã¬ãŒã ã¯ãŒã¯ã®æ¥å¢
ç§ã«ãšã£ãŠããäžã€ã®æãããªåŸåã¯ãã¬ãã¬ããžãæ±ã£ãè«æã®å€§å¹ ãªå¢å ã§ãã£ãã æœå𿡿£ã¢ãã« ïŒLDMïŒãšã㊠çºé»æ© ã¡ãã·ã¥ããŒã¹ã®ãåŸæ¥ã®ãCGI ã¢ãã«ã§ãã
ãã®ã¿ã€ãã®ãããžã§ã¯ãã«ã¯ããã³ã»ã³ãã® ã€ã³ã¹ã¿ã³ãã¡ãã·ã¥3D, 3Dããã¢, 2, V3D, MVç·šé, GIMDæ¡æ£ãåæ§ã®è£œåã¯æ°å€ãååšããŸãã

3Dtopia ã®æ¡æ£ããŒã¹ã®ããã»ã¹ã«ããã¡ãã·ã¥ã®çæãšæ¹è¯ã åºå ž: https://arxiv.org/pdf/2403.02234
ãã®æ°ããªç ç©¶ã®æµãã¯ãæ¡æ£ã¢ãã«ãªã©ã®çæã·ã¹ãã ã®ç¶ç¶çãªæ±ãã«ããã«å¯Ÿããæé»ã®è²æ©ãšèŠãªãããšãã§ããŸããæ¡æ£ã¢ãã«ã¯ãæ¡æ£>ã¡ãã·ã¥ ã¢ãã«ãçŸåšæ¡çšããããšããŠãããã¹ãŠã®ã·ã¹ãã ã®æœåšçãªä»£æ¿ãšããŠå®£äŒãããŠããããã 2 幎ããçµã£ãŠããããæ¡æ£ã¯ 30 幎以äžåã«é¡ããã¯ãããžãŒãšã¯ãŒã¯ãããŒã®ããŒã«ã®åœ¹å²ã«è¿œãããããŠããŸãã
ãªãŒãã³ãœãŒã¹ã®åµå§è Stability.ai å®å®æ¡æ£ ã¢ãã«ã¯ããªãªãŒã¹ãããã°ãã å®å®ã®ãŒã123ããšãããã ãã¥ãŒã©ã« ã©ãã£ã¢ã³ã¹ ãã£ãŒã«ã AIçæç»åã®ïŒNeRFïŒè§£éã¯ãUnityãªã©ã®CGIåéããããªã²ãŒã ãæ¡åŒµçŸå®ãããã³æç€ºçãª3D座æšãå¿ èŠãšãããã®ä»ã®ãã©ãããã©ãŒã ã§äœ¿çšã§ããæç€ºçãªã¡ãã·ã¥ããŒã¹ã®CGIã¢ãã«ãäœæããããã®æ©æž¡ããšããŠæ©èœããŸãã é£ç¶é¢æ°.
ã¯ãªãã¯ããŠåçããŸãã Stable Diffusion ã§çæãããç»åã¯ãæç CGI ã¡ãã·ã¥ã«å€æã§ããŸããããã§ã¯ãStable Zero 123 ã䜿çšããç»å > CGI ã¯ãŒã¯ãããŒã®çµæã瀺ããŸãã åºå ž: https://www.youtube.com/watch?v=RxsssDD48Xc
3Dã»ãã³ãã£ã¯ã¹
çæAIåéã§ã¯ãããžã§ã³ãšçæã·ã¹ãã ã®2Dã·ã¹ãã ãš3Dã·ã¹ãã ã®å®è£ ãåºå¥ããŠããŸããããšãã°ã é¡ã®ã©ã³ãããŒã¯ãã¬ãŒã ã¯ãŒã¯ããã 衚ããŸã ãã¹ãŠã®å Žåã«ãããŠã3D ãªããžã§ã¯ã (é¢) ã¯å¿ ãããã¢ãã¬ã¹æå®å¯èœãª 3D 座æšãèšç®ããããã§ã¯ãããŸããã
äžè¬ç FANAlignã·ã¹ãã 2017 幎é ã®ãã£ãŒããã§ã€ã¯ ã¢ãŒããã¯ãã£ãªã©ã§åºã䜿çšãããŠãã ã¯ã次ã®äž¡æ¹ã®ã¢ãããŒãã«å¯Ÿå¿ã§ããŸãã

äžã®å³ã§ã¯ãèªèãããé¡ã®èŒªéãšç¹åŸŽã®ã¿ã«åºã¥ã㊠2D ã©ã³ãããŒã¯ãçæãããŠããŸããäžã®å³ã§ã¯ãã©ã³ãããŒã¯ã 3D X/Y/Z 空éã«åçåãããŠããŸãã åºå ž: https://github.com/1adrianb/face-alignment
ããã£ãŒããã§ã€ã¯ãã ææ§ã§ä¹ã£åãããçšèªåæ§ã«ãã3Dããã³ã³ãã¥ãŒã¿ãŒããžã§ã³ç ç©¶ã«ãããŠçŽããããçšèªã«ãªã£ãŠããŸãã
æ¶è²»è ã«ãšã£ãŠãããã¯éåžžãã¹ãã¬ãªå¯Ÿå¿ã¡ãã£ã¢ (èŠèŽè ãç¹æ®ãªã¡ã¬ããççšããå¿ èŠãããæ ç»ãªã©) ãæå³ããŸããäžæ¹ãèŠèŠå¹æã®å°éå®¶ãã¢ãã©ãŒã«ãšã£ãŠã¯ã2D ã¢ãŒãã¯ãŒã¯ (æŠå¿µã¹ã±ãããªã©) ãšãMaya ã Cinema3D ãªã©ã®ã4D ããã°ã©ã ãã§æäœã§ããã¡ãã·ã¥ããŒã¹ã®ã¢ãã«ãåºå¥ããããšãæå³ããŸãã
ããããã³ã³ãã¥ãŒã¿ããžã§ã³ã§ã¯ãããã¯åã« ãã«ã«ã座æšç³» ã©ããã«ååšãã æœåšç©ºé ã¢ãã«ã® ãŠãŒã¶ãŒãçŽæ¥æäœãããã察åŠãããã§ãããšã¯éããªããå°ãªããšãããµãŒãããŒãã£ã®è§£éåCGIããŒã¹ã®ã·ã¹ãã ããªããã°ã 3DMM or ç.
ãããã£ãŠã æ¡æ£>3D äžæ£ç¢ºã§ããã ãã§ãªãã ã©ãã çæ CGI ã¢ãã«ãçæããããã®å ¥åãšããŠãããŸããŸãªçš®é¡ã®ç»å (å®éã®åçãå«ã) ã䜿çšã§ããŸãããããææ§ããå°ãªããã¡ãã·ã¥ããšããçšèªã®æ¹ãé©åã§ãã
ããããææ§ããããã«è€éã«ããŠããã®ã¯ãæ¡æ£ is æ°ããªãããžã§ã¯ãã®å€§å€æ°ã§ã¯ããœãŒã¹åçãã¡ãã·ã¥ã«è§£éããå¿ èŠãããããã®ãããããé©åãªèª¬æã¯æ¬¡ã®ããã«ãªãã ããã ç»åããã¡ãã·ã¥ãžäžæ¹ã ç»å>æ¡æ£>ã¡ãã·ã¥ ããã«æ£ç¢ºãªèª¬æã§ãã
ããããåç· åœ¹äŒãæè³å®¶ã®é¢å¿ãåŒãããã®åºå ±çºè¡šã§ã¯ãããã売ã蟌ãã®ã¯é£ããã
建ç¯ã®è¡ãè©°ãŸãã®èšŒæ
2023å¹Žãšæ¯ã¹ãŠããéå»12ãæéã®è«æãèŠããšã å³ããå®çšäžã®éç æ¡æ£ããŒã¹ã®çæã«ã€ããŠã
äž»ãªé害ã¯ãç©èªçã«ãæéçã«ãäžè²«æ§ã®ãããããªãçæããç°ãªããã㪠ã¯ãªããéã ãã§ãªããçæãããåäžã®ãã㪠ã¯ãªããã®çãå®è¡æéã«ããã£ãŠãããã£ã©ã¯ã¿ãŒãšãªããžã§ã¯ãã®å€èгã®äžè²«æ§ãç¶æããããšã§ãã
æ¡æ£åæã«ãããæåŸã®ç»æçãªé©æ°ã¯ LoRAã®ç»å Ž 2022幎ãFluxãªã©ã®æ°ããã·ã¹ãã ã§ã¯ãStable Diffusionã以åã¯çæãããç»åå ã§ããã¹ãã³ã³ãã³ããåçŸã§ããªãã£ããªã©ã®äžéšã®ç°åžžå€ã®åé¡ãæ¹åãããå šäœçãªç»åå質ãåäžããŸãããã2024幎ã«ç§ãç ç©¶ããè«æã®å€§éšåã¯ãåºæ¬çã«ç¿ã®äžã§é£ã¹ç©ãåããã ãã®ãã®ã§ããã
ããããè çç¶æ ã¯ãçæçæµå¯Ÿãããã¯ãŒã¯ (GAN) ããã¥ãŒã©ã« ã©ãã£ã¢ã³ã¹ ãã£ãŒã«ã (NeRF) ã§ã以åã«çºçããŠãããã©ã¡ããåœåã®æœåšèœåãååã«çºæ®ã§ãããåŸæ¥ã®ã·ã¹ãã ã§ãŸããŸã掻çšãããããã«ãªã£ãŠããŸã (Stable Zero 123 ã§ã® NeRF ã®äœ¿çšãªã©ãäžèšãåç §)ãããã¯æ¡æ£ã¢ãã«ã§ãçºçããŠããããã§ãã
ã¬ãŠã¹ã¹ãã©ããã£ã³ã°ç ç©¶ã®ãããã
2023幎æ«ã«ã¯ã©ã¹ã¿ã©ã€ãºæ¹åŒã 3D ã¬ãŠã¹ ã¹ãã©ããã£ã³ã° 3幎代åé ã«å»ççšç»åæè¡ãšããŠç»å Žãã1990DGSã¯ãçªç¶ ãªãŒããšã³ã³ãŒãããŒã¹ 人éã®ç»ååæã®èª²é¡ïŒé¡ã®ã·ãã¥ã¬ãŒã·ã§ã³ãåçŸãã¢ã€ãã³ãã£ãã£ã®è»¢éãªã©ïŒã解決ããã·ã¹ãã ã
2023幎ã®ASHè«æã§ã¯ã å šèº«3DGS人éäžæ¹ã ã¬ãŠã¹ã¢ãã¿ãŒ ãªãŒããšã³ã³ãŒããä»ã®ç«¶åæ¹æ³ãšæ¯èŒããŠå€§å¹ ã«æ¹åããã詳现ãšãå°è±¡çãªã¯ãã¹åçŸãæäŸããŸããã
ããããä»å¹Žã¯ 3DGS ããåæã«ããããã®ãããªç»æçãªç¬éãæ¯èŒçå°ãªãããã®åé¡ã«åãçµãã è«æã®ã»ãšãã©ã¯äžèšã®ç ç©¶ã®æŽŸçãããã®èœåãè¶ ããããšãã§ããªãã£ããã®ããããã§ããã
代ããã«ã3DGS ã§ã¯ãã®åºæ¬çãªå»ºç¯çå®çŸå¯èœæ§ã®åäžã«éç¹ã眮ãããæ¹åããã 3DGS ã®å€éšç°å¢ãææ¡ããè«æãæ¬¡ã ãšçºè¡šãããããã«ãªããŸããã ç¹å¥ãªæ³šæ åæäœçœ®æšå®ãšãããã³ã°ïŒSLAM) 3DGSã¢ãããŒãã¯ã次ã®ãããªãããžã§ã¯ãã§æ¡çšãããŠããŸãã ã¬ãŠã¹ã¹ãã©ããã£ã³ã°SLAM, ã¹ãã©ããã¹ã©ã , ã¬ãŠã¹SLAM, ããã€ã-ã¹ãã©ãããä»ã®å€ãã®éã§ã
ã¹ãã©ããããŒã¹ã®äººéåæãç¶ç¶ãŸãã¯æ¡åŒµããããšãããããžã§ã¯ãã«ã¯ã ãã°ã¹, GEM, EVA, ãªã¯ãã¥ãŒãžã§ã³, FAGããã, ãã¥ãŒãã³ã¹ãã©ãã, GGããã, è°äºé², ãã4Dä»ã«ãããã€ããããããããã®çºè¡šã¯ããããã2023幎åŸåã«çºè¡šãããè«æã®åœåã®ã€ã³ãã¯ãã«å¹æµãããã®ã§ã¯ãªãã£ãã
æ€æ»ãµã³ãã«ã®ãã¯ã€ã³ã¹ã¿ã€ã³æä»£ãã¯ïŒãã£ãããšïŒæžå°åŸåã«ãã
æ±åã¢ãžã¢å šè¬ïŒç¹ã«äžåœïŒã®ç ç©¶ã§ã¯ãå°ã ãåºæ¿çãªãå 容ãå«ãŸããŠãããããã¬ãã¥ãŒèšäºã§åå ¬éããã«ã¯åé¡ã®ãããã¹ãäŸãããåãäžããããŸãã
ãã®å°åã®ç ç©¶è ãèªåãã¡ã®ææã§æ³šç®ãéããããšããŠãããããªã®ãã©ããã¯è°è«ã®äœå°ãããããéå»18ãæéãçæAIïŒç»åãåç»ïŒã«é¢ããè«æã®ããã©ã«ããšããŠãè¥ããŠé²åºåºŠã®é«ã女æ§ãå°å¥³ããããžã§ã¯ãã®äŸãšããŠäœ¿ãããšãå¢ããŠãããNSFWããããã®äŸãšããŠã¯ã次ã®ãããªãã®ãããã ãŠãã¢ãã¡ã€ã, ã³ã³ãããŒã«æ¬¡ãžããããŠéåžžã«ãç¡å³ä¹Ÿç¥ããªè«æã§ããã ãã¬ã·ã§ãããªã¢ãŒã·ã§ã³è·é¢ã«ããã¢ãŒã·ã§ã³äžè²«æ§ã®è©äŸ¡ ïŒFVMDïŒã
ããã¯ãæœåšçæ¡æ£ã¢ãã« (LDM) ãäžå¿ã«éãŸã£ããµãã¬ãã£ããããã®ä»ã®ã³ãã¥ããã£ã®äžè¬çãªåŸåã«æ²¿ã£ããã®ã§ãã«ãŒã« 34 ã¯äŸç¶ãšããŠé¡èã§ãã
ã»ã¬ã察決
ãã®çš®ã®äžé©åãªäŸã¯ãAIããã»ã¹ãæå人ã®èåãæ£æçã«å©çšãã¹ãã§ã¯ãªããšããèªèã®é«ãŸããšéãªããç¹ã«ãäŸãç¡æ¹å€ã«äœ¿çšããç ç©¶ã«ãããŠã¯ããã ã ç¹è² é åçãªæå人ãå€ãã®å Žåã¯å¥³æ§ãåãäžããçãããç¶æ³ã«çœ®ããŸãã
äžäŸã§ã ãããããã¬ãã·ã³ã°ã¯ãéåžžã«è¥ãã¢ãã¡é¢šã®å¥³æ§ãã£ã©ã¯ã¿ãŒããã£ãŒãã£ãŒããŠããã»ããããªãªã³ã»ã¢ã³ããŒãªã©ã®å€å žçãªæå人ããã¢ã³ã»ããµãŠã§ã€ïŒãã®ãããªäœ¿çšæ³ãéé£ããŠããïŒãªã©ã®çŸåšã®æå人ã®ã¢ã€ãã³ãã£ãã£ãèªç±ã«äœ¿çšããŠããŸãã ããªã声é«ã«).

æ±åã¢ãžã¢ã®æ°èã§ã¯ãçŸåšã®èå人ããå€å žçããªèåäººãæ£æçã«èµ·çšããããšã¯äŸç¶ãšããŠããªãäžè¬çã ãããã®ç¿æ £ã¯å°ããã€æžå°ããŠããã åºå ž: https://crayon-shinchan.github.io/AnyDressing/
In 西éšã® è«æã«ãããšããã®ç¹å®ã®æ £è¡ã¯2024幎ãéããŠèããæžå°ããŠãããFAANGãOpenAIãªã©ã®ä»ã®é«ã¬ãã«ã®ç ç©¶æ©é¢ããã®å€§èŠæš¡ãªãªãªãŒã¹ãäž»å°ããŠããŸããå°æ¥ã®èšŽèšã®å¯èœæ§ãæ¹å€çã«èªèããŠãããããã®å€§æäŒæ¥ã¯ã æ¶ç©ºã® åçã®ããã«ãªã¢ã«ãªäººã ã
圌ããäœã£ãŠããã·ã¹ãã ïŒäŸãã° ç»å ããã³ ãŽã§ãª2ïŒã¯æããã«ãã®ãããªåºåãå¯èœã§ããã西æŽã®çæ AI ãããžã§ã¯ãã®äŸã§ã¯ãçŸåšãããããããããã£ãºããŒé¢šã®ã極ããŠãå®å šãªãç»åãåç»ããã¬ã³ãã«ãªã£ãŠããŸãã

Imagen ã¯ããã©ããªã¢ãªã¹ãã£ãã¯ããªåºåãäœæããèœåãèªã£ãŠããã«ãããããããGoogle Research ã宣äŒãããµã³ãã«ã¯å žåçã«ã¯ç©ºæ³çã§ãå®¶æåããã®ãã®ã§ããããã©ããªã¢ãªã¹ãã£ãã¯ãªäººéã¯æ éã«é¿ããããŠããããæå°éã®äŸããæäŸãããŠããŸããã ãœãŒã¹: https://imagen.research.google/
æŽé¡
西æŽã®å±¥æŽæžã®æç®ã§ã¯ããã®äžèª å®ãªã¢ãããŒãã¯ç¹ã« ã«ã¹ã¿ã å ã·ã¹ãã - è€æ°ã®äŸã«ããã£ãŠç¹å®ã®äººç©ã®äžè²«ããé¡äŒŒæ§ãäœæã§ããæ¹æ³ïŒã€ãŸããLoRAãå€ã ããªãŒã ããŒã¹).
äŸãšããŠã¯ã çŽäº€èŠèŠåã蟌ã¿, LoRA äœæ²å®¶ãGoogleã® ã€ã³ã¹ãã©ã¯ãããŒã¹ããã®ä»å€æ°ã

ãããŸã§ã®çµç·¯ããããŠãŒã¶ãŒã¯æ¯ç®ããã¯ãã¯ãããã£ã©ã¯ã¿ãŒããããåçã®ããã«ãªã¢ã«ãªäººéãäœæããããšã«èå³ãããããã§ãããGoogle ã® InstructBooth ã¯ããããããã 11 åã«é«ããŠããŸãã åºå ž: https://sites.google.com/view/instructbooth
ãããããããããäŸãã®å°é ã¯ãä»ã®CVããã³çµ±åç ç©¶åéã§ãèŠãããäŸãã°æ¬¡ã®ãããªãããžã§ã¯ãã§èŠãããã ã³ã³ã4D, V3D, ãã¶ã€ã³ç·šé, ãŠããšãã£ãã, ãã§ã€ã¹ãã§ãŒã³ ïŒããã¯ãããçŸå®çãªãŠãŒã¶ãŒã®æåŸ ã«å¿ãããã®ã§ããã GitHubããŒãžïŒãåã³ DPG-T2Iãä»ã®å€ãã®éã§ã
ãã®ãããªã·ã¹ãã ïŒäŸãã° LoRAïŒã¯æ¯èŒçå®äŸ¡ãªããŒããŠã§ã¢ã§å®¶åºãŠãŒã¶ãŒã§ãäœæã§ãããããç¡æã§ããŠã³ããŒãã§ããæå人ã®ã¢ãã«ãæ¥å¢ããŠããã civit.aiãã¡ã€ã³ ãããŠã³ãã¥ããã£ããã®ãããªäžæ£äœ¿çšã¯ã次ã®ãããªã¢ãŒããã¯ãã£ã®ãªãŒãã³ãœãŒã¹åã«ãã£ãŠå¯èœãšãªã£ãŠããã å®å®æ¡æ£ ããã³ Flux.
çæããã¹ãç»åïŒT2IïŒãããã¹ãåç»ïŒT2VïŒã·ã¹ãã ã®å®å šæ©èœãçªç ŽããŠããã©ãããã©ãŒã ã®å©çšèŠçŽã§çŠæ¢ãããŠããçŽ æãäœæããããšã¯ãããããŸãããæé«ã®ã·ã¹ãã ïŒRunwayMLãSoraãªã©ïŒã®å¶éãããæ©èœãšãåã«ããã©ãŒãã³ã¹ã®é«ãã·ã¹ãã ïŒ å®å®ããåç»ã®æ®å, ã³ã°ãã㪠ããã³çŸå°ã§ã®å±é 枟æºïŒã¯ãå€ãã®äººãä¿¡ããŠããããã«ãå®éã«ã¯éåºããŠããªãã
ãããããããã®ç¬èªã·ã¹ãã ãšãªãŒãã³ãœãŒã¹ ã·ã¹ãã ã¯ãããããåãããã«åœ¹ã«ç«ããªããªãæãããããŸããé«äŸ¡ã§ãã€ããŒã¹ã±ãŒã«ã® T2V ã·ã¹ãã ã¯ã蚎èšã®æãããé床ã«å¶éãããå¯èœæ§ããããŸããäžæ¹ããªãŒãã³ãœãŒã¹ ã·ã¹ãã ã«ã¯ã©ã€ã»ã³ã¹ ã€ã³ãã©ã¹ãã©ã¯ãã£ãšããŒã¿ã»ããã®ç£èŠããªãããããã峿 ŒãªèŠå¶ãæœè¡ããããšãåžå Žããå®å šã«ç· ãåºãããå¯èœæ§ããããŸãã
åççºè¡æ¥ïŒ24幎2024æXNUMXæ¥ç«ææ¥