Artificial Intelligence
ãã£ã 2 æã®ç»åããããåªãã AI ãããªãçæ

ãããªãã¬ãŒã è£éïŒVFIïŒã¯ã æªè§£æ±ºã®åé¡ çæãããªç ç©¶ã«ããã課é¡ã¯ããããªã·ãŒã±ã³ã¹å ã®æ¢åã® 2 ã€ã®ãã¬ãŒã ã®éã«äžéãã¬ãŒã ãçæããããšã§ãã
ã¯ãªãã¯ããŠåçããŸãã Google ãšã¯ã·ã³ãã³å€§åŠã®å ±åãããžã§ã¯ãã§ãã FILM ãã¬ãŒã ã¯ãŒã¯ã¯ãè¶£å³ãããã®åéã§ä»ã§ã人æ°ã®é«ã广çãªãã¬ãŒã è£éæ¹æ³ãææ¡ããŸãããå·ŠåŽã«ã¯ã2 ã€ã®å¥åã®ç°ãªããã¬ãŒã ãéãåããããŠããŸããäžå€®ã«ã¯ãçµäºãã¬ãŒã ãããããå³åŽã«ã¯ãã¬ãŒã éã®æçµçãªåæã瀺ãããŠããŸãã åºå ž: https://film-net.github.io/ ããã³ https://arxiv.org/pdf/2202.04901
倧ãŸãã«èšãã°ããã®æè¡ã¯1äžçŽä»¥äžåã«é¡ãã äŒçµ±çãªã¢ãã¡ãŒã·ã§ã³ã§äœ¿çšããã ãã以æ¥ããã¹ã¿ãŒã®ãããŒãã¬ãŒã ãã¯äž»èŠãªã¢ãã¡ãŒã·ã§ã³ ã¢ãŒãã£ã¹ãã«ãã£ãŠçæãããäžéãã¬ãŒã ã®ããã¥ã€ãŒã³ãäœæ¥ã¯ä»ã®ã¹ã¿ããã«ãã£ãŠãããåçŽãªäœæ¥ãšããŠå®è¡ãããããã«ãªããŸããã
çæAIãç»å Žãã以åã¯ããã¬ãŒã è£éã¯æ¬¡ã®ãããªãããžã§ã¯ãã§äœ¿çšãããŠããŸããã ãªã¢ã«ã¿ã€ã äžéãããŒæšå® ïŒã©ã€ãïŒã 深床èªèãã㪠ãã¬ãŒã è£é ïŒDAINïŒããããŠGoogle㮠倧ããªåãã«å¯Ÿãããã¬ãŒã è£é (FILM â äžèšåç §) æ¢åã®ãããªã®ãã¬ãŒã ã¬ãŒããäžããããããŸãã¯äººå·¥çã«çæãããã¹ããŒã¢ãŒã·ã§ã³å¹æãæå¹ã«ããããã«äœ¿çšããŸããããã¯ãã¯ãªããã®æ¢åã®ãã¬ãŒã ãåå²ããæšå®äžéãã¬ãŒã ãçæããããšã«ãã£ãŠå®çŸãããŸãã
VFIã¯ãããåªãããããªã³ãŒããã¯ã®éçºã«ã䜿çšãããããäžè¬çã«ã¯ã ãªããã£ã«ã«ãããŒããŒã¹ã®ã·ã¹ãã ïŒçæã·ã¹ãã ãå«ãïŒã¯ã次ã®ããŒãã¬ãŒã ã«é¢ããäºåã®ç¥èãæŽ»çšããŠããã®åã®ã€ã³ã¿ãŒã¹ãã£ã·ã£ã« ã³ã³ãã³ããæé©åããã³åœ¢æããŸãã
ãžã§ãã¬ãŒãã£ããããªã·ã¹ãã ã®çµäºãã¬ãŒã
Luma ã Kling ãªã©ã®ææ°ã®çæã·ã¹ãã ã§ã¯ããŠãŒã¶ãŒã¯éå§ãã¬ãŒã ãšçµäºãã¬ãŒã ãæå®ã§ãã2 ã€ã®ç»åã®ããŒãã€ã³ããåæã㊠2 ã€ã®ç»åéã®è»è·¡ãæšå®ããããšã§ãã®ã¿ã¹ã¯ãå®è¡ã§ããŸãã
以äžã®äŸãããããããã«ããçµäºãããŒãã¬ãŒã ãæäŸããããšã§ãçµæãå®ç§ã§ãªããŠã (ç¹ã«å€§ããªåãã®å Žå)ãçæãã㪠ã·ã¹ãã (ãã®å Žå㯠Kling) ãã¢ã€ãã³ãã£ãã£ãªã©ã®åŽé¢ãç¶æã§ããããã«ãªããŸãã
ã¯ãªãã¯ããŠåçããŸãã Kling ã¯ããŠãŒã¶ãŒãçµäºãã¬ãŒã ãæå®ã§ãããã㪠ãžã§ãã¬ãŒã¿ãŒã® 1 ã€ã§ã (Runway ã Luma ãªã©)ãã»ãšãã©ã®å Žåãæå°éã®åããæããªã¢ã«ã§æ¬ é¥ã®å°ãªãçµæããããããŸãã åºå ž: https://www.youtube.com/watch?v=8oylqODAaH8
äžèšã®äŸã§ã¯ããŠãŒã¶ãŒãæå®ãã 2 ã€ã®ããŒãã¬ãŒã éã§äººç©ã® ID ãäžè²«ããŠãããããæ¯èŒçäžè²«ãããããªçæãè¡ãããŸãã
éå§ãã¬ãŒã ã®ã¿ãæäŸãããŠããå Žåãçæã·ã¹ãã ã®æ³šæãŠã£ã³ããŠã¯éåžžããããªã®éå§æã«äººç©ãã©ã®ããã«èŠãããããæãåºããã®ã«ååãªå€§ããã§ã¯ãããŸããããããããã¹ãŠã®é¡äŒŒæ§ã倱ããããŸã§ãåãã¬ãŒã ããšã«ã¢ã€ãã³ãã£ãã£ãå°ããã€å€åããå¯èœæ§ããããŸããæ¬¡ã®äŸã§ã¯ãéå§ç»åãã¢ããããŒããããããã¹ãããã³ããã«ãã£ãŠäººç©ã®åããèªå°ãããŠããŸãã
ã¯ãªãã¯ããŠåçããŸãã çµäºãã¬ãŒã ããªããããKling ã¯æ¬¡ã®ãã¬ãŒã ã®çæãå°ãããã«çŽåã®ãã¬ãŒã ã®å°ããªã°ã«ãŒãã®ã¿ã䜿çšããŸããéèŠãªåããå¿ èŠãªå Žåããã®ã¢ã€ãã³ãã£ãã£ã®èçž®ã¯æ·±å»ã«ãªããŸãã
俳åªã®é¡äŒŒæ§ã¯æç€ºã«å¯ŸããŠæè»ã§ã¯ãªãããšãããããŸããããã¯ãçæã·ã¹ãã ã¯ä¿³åªãç¬ã£ãŠããå Žåã©ã®ããã«èŠããããç¥ãããã·ãŒãç»å (å©çšå¯èœãªå¯äžã®åç §) ã§ã¯ä¿³åªã¯ç¬ã£ãŠããªãããã§ãã
ãã€ã©ã«çæã¯ãªããã®å€§åã¯ãããããæ¬ ç¹ãç®ç«ããªãããããã«æ³šææ·±ããã¥ã¬ãŒã·ã§ã³ãããŠããŸããããããæéçã«äžè²«æ§ã®ããçæãã㪠ã·ã¹ãã ã®é²æ©ã¯ããã¬ãŒã è£éã«é¢ããç ç©¶éšéã®æ°ããªéçºã«äŸåããå¯èœæ§ããããŸããå¯äžã®ä»£æ¿ææ®µã¯ãåŸæ¥ã® CGI ãé§åãããã¬ã€ãããããªãšããŠé Œãããšã§ããããã§ã (ãã®å Žåãããã¯ã¹ãã£ãšç §æã®äžè²«æ§ãå®çŸããããšã¯çŸæç¹ã§ã¯å°é£ã§ã)ã
ããã«ãæè¿ã®ãã¬ãŒã ã®å°ããªã°ã«ãŒãããæ°ãããã¬ãŒã ãå°ãåºããšãããã£ãããšããå埩çãªæ§è³ªã«ããã éåžžã«é£ãã 倧ãããŠå€§èãªåããå®çŸããŸããããã¯ãã·ã¹ãã ããã¬ãŒãã³ã°ãããŠããå¯èœæ§ãé«ãããç·©ãããªåããšã¯å¯Ÿç §çã«ããã¬ãŒã ãæšªåã£ãŠé«éã§ç§»åãããªããžã§ã¯ããã1 ã€ã®ãã¬ãŒã ã®ã¹ããŒã¹å ã§äžæ¹ãã仿¹ãžç§»åããå¯èœæ§ãããããã§ãã
åæ§ã«ãããŒãºã®å€§å¹ ãã€å€§èãªå€åã¯ãã¢ã€ãã³ãã£ãã£ã®å€åã ãã§ãªããé¡èãªäžäžèŽã«ã€ãªããå¯èœæ§ããããŸãã
ã¯ãªãã¯ããŠåçããŸãã ãã® Luma ã®äŸã§ã¯ãèŠæ±ãããåãããã¬ãŒãã³ã° ããŒã¿ã§é©åã«è¡šçŸãããŠããªãããã§ãã
ãã¬ãŒã
ããã§ãäžåœããæè¿çºè¡šãããè峿·±ãè«æã«ã€ããŠè§ŠããããšæããŸãããã®è«æã§ã¯ãæ¬ç©ãã£ããã®ãã¬ãŒã è£éæè¡ã®æ°ããªæå 端æè¡ãå®çŸãããšäž»åŒµããŠããããã©ãã°ããŒã¹ã®ãŠãŒã¶ãŒã€ã³ã¿ã©ã¯ã·ã§ã³ãæäŸããåããŠã®æè¡ã§ãããšãããŠããŸãã
Framerã§ã¯ãçŽæçãªãã©ãã°ããŒã¹ã®ã€ã³ã¿ãŒãã§ãŒã¹ã䜿çšããŠãŠãŒã¶ãŒãåããæç€ºã§ããŸããããèªåãã¢ãŒãããããŸããåºå ž: https://www.youtube.com/watch?v=4MPGKgn7jRc
ãã©ãã°äžå¿ã®ã¢ããªã±ãŒã·ã§ã³ã¯ é »ç¹ãª in ã ã¬ããŒã æè¿ãç ç©¶éšéã¯ãããã¹ãããã³ããã«ãã£ãŠåŸãããããªãç²ãçµæã«åºã¥ããªãçæã·ã¹ãã ã®ããã®ææ®µãæäŸããããšã«èŠåŽããŠããŸãã
æ°ããã·ã¹ãã ã¯ã ãã¬ãŒãã¯ããŠãŒã¶ãŒã«ãããã©ãã°æäœã«åŸãã ãã§ãªããããåŸæ¥çãªãèªåæçžŠãã¢ãŒããåããŠããŸããåŸæ¥ã®ãã¥ã€ãŒã³æ©èœã«å ãããã®ã·ã¹ãã ã¯ã¿ã€ã ã©ãã¹ ã·ãã¥ã¬ãŒã·ã§ã³ããå ¥åç»åã®ã¢ãŒãã£ã³ã°ãæ¬æ°ãªãã¥ãŒãçæããããšãã§ããŸãã

Framer ã®ã¿ã€ã ã©ãã¹ ã·ãã¥ã¬ãŒã·ã§ã³çšã«çæãããã€ã³ã¿ãŒã¹ãã£ã·ã£ã« ãã¬ãŒã ã åºå ž: https://arxiv.org/pdf/2410.18978
æ°ãããã¥ãŒã®çæã«é¢ããŠã¯ãFramer 㯠Neural Radiance Fields (NeRF) ã®é åã«å°ãèžã¿èŸŒãã§ããŸãããå¿ èŠãªã®ã¯ 2 ã€ã®ç»åã ãã§ããäžæ¹ãNeRF ã§ã¯éåžžã6 ã€ä»¥äžã®ç»åå ¥åãã¥ãŒãå¿ èŠã§ãã
ãã¹ãã§ã¯ãStability.aiã® å®å®ããåç»ã®æ®å æœå𿡿£çæãããªã¢ãã«ã¯ããŠãŒã¶ãŒèª¿æ»ã«ãããŠãè¿äŒŒãããç«¶åã¢ãããŒããããåªããããã©ãŒãã³ã¹ãçºæ®ããããšãã§ããŸããã
å·çæç¹ã§ã¯ãã³ãŒãã¯å ¬éãããäºå®ã§ãã GitHubã§äžã®ç»åã®å ãšãªã£ããããªãµã³ãã«ã¯ãããžã§ã¯ããµã€ãã§å ¬éãããŠãããç ç©¶è ã㯠YouTubeãããª.
XNUMXÎŒmã®æ³¢é·ãæã€ æ°ããçŽ ãšããã¿ã€ãã«ã§ã Framer: ã€ã³ã¿ã©ã¯ãã£ããªãã¬ãŒã è£éæµæ±å€§åŠãšã¢ãªããåäžã®ã¢ã³ãã»ã°ã«ãŒãã®ç ç©¶è 9人ã«ãããã®ã ã
æ¹æ³
Framer ã¯ã2 ã€ã®ã¢ããªãã£ã®ãããã«ãããŠãããŒãã€ã³ã ããŒã¹ã®è£éã䜿çšããŸããããŒãã€ã³ã ããŒã¹ã®è£éã§ã¯ãå ¥åç»åã®åºæ¬ããããžãè©äŸ¡ãããå¿ èŠã«å¿ããŠãç§»åå¯èœãªããã€ã³ããå²ãåœãŠãããŸããå®éã«ã¯ããããã®ãã€ã³ã㯠ID ããŒã¹ã®ã·ã¹ãã ã«ãããé¡ã®ã©ã³ãããŒã¯ã«çžåœããŸãããä»»æã®è¡šé¢ã«äžè¬åãããŸãã
ç ç©¶è åŸ®èª¿æŽ å®å®ãããããªæ¡æ£ïŒSVDïŒ ãªãŒãã³ããã-1M ããŒã¿ã»ããã«ãæåŸã®ãã¬ãŒã ã®åææ©èœã远å ãããŸãããããã«ãããæçµãã¬ãŒã ã«åããïŒãŸãã¯ããããæ»ãïŒãã¹ãè©äŸ¡ã§ããè»éå¶åŸ¡ã¡ã«ããºã ïŒäžã®ã¹ããŒãç»åã®å³äžïŒã容æã«ãªããŸãã

Framer ã®ã¹ããŒãã
æåŸã®ãã¬ãŒã ã®æ¡ä»¶ä»ãã®è¿œå ã«é¢ããŠãèè ã¯æ¬¡ã®ããã«è¿°ã¹ãŠããŸãã
äºåã«ãã¬ãŒãã³ã°ããã SVD ã®èŠèŠçãªäºåæ¡ä»¶ãå¯èœãªéãä¿æããããã«ãSVD ã®æ¡ä»¶ä»ããã©ãã€ã ã«åŸããæœåšç©ºéãšæå³ç©ºéã«ãããããšã³ããã¬ãŒã æ¡ä»¶ãæ¿å ¥ããŸãã
å ·äœçã«ã¯ãSVD ã®å Žåãšåæ§ã«ãæåã® [ãã¬ãŒã ] ã® VAE ãšã³ã³ãŒããããæœåšç¹åŸŽãæåã®ãã¬ãŒã ã®ãã€ãºæœåšç¹åŸŽãšé£çµããŸããããã«ãæ¡ä»¶ãšå¯Ÿå¿ãããã€ãºæœåšç¹åŸŽã空éçã«æŽåããŠããããšãèæ ®ããŠãæåŸã®ãã¬ãŒã ã®æœåšç¹åŸŽ zn ãæåŸã®ãã¬ãŒã ã®ãã€ãºæœåšç¹åŸŽãšé£çµããŸãã
ãããã«ãæåã®ãã¬ãŒã ãšæåŸã®ãã¬ãŒã ã® CLIP ç»ååã蟌ã¿ãåå¥ã«æœåºããããããé£çµããŠã¯ãã¹ã¢ãã³ã·ã§ã³æ©èœã®æ³šå ¥ãè¡ããŸããã
ãã©ãã°ããŒã¹ã®æ©èœã«ã€ããŠã¯ãè»éã¢ãžã¥ãŒã«ã¯Meta AIäž»å°ã® ã³ãã©ãã«ãŒ ãã¬ãŒã ã¯ãŒã¯ã¯ã倿°ã®å¯èœæ§ã®ããçµè·¯ãè©äŸ¡ããŸããããã㯠1 ïœ 10 åã®å¯èœãªçµè·¯ã«çµã蟌ãŸããŸãã
åŸãããç¹ã®åº§æšã¯ã ãã©ãã°NUWA ããã³ ãã©ãã°ãšãã·ã³ã° ã¢ãŒããã¯ãã£ãããã«ããã ã¬ãŠã¹ããŒãããããç§»åã®å¯Ÿè±¡ãšãªãé åãåå¥åããŸãã
ãã®åŸãããŒã¿ã¯æ¡ä»¶ä»ãã¡ã«ããºã ã«éããã ã³ã³ãããŒã«ãããã¯ãããšããš Stable Diffusion çšã«èšèšãããè£å©çãªé©åã·ã¹ãã ã§ããããã®åŸä»ã®ã¢ãŒããã¯ãã£ã«ãé©å¿ãããŸããã
ãªãŒããã€ãããã¢ãŒãã§ã¯ãç¹åŸŽã®ãããã³ã°ã¯æåã« SIFTã¯ãè»éãè§£éãããããèªåæŽæ°ã¡ã«ããºã ã«æž¡ããŸãã ãã©ãã°ã¬ã³ ããã³ ãã©ãã°æ¡æ£.

Framer ã«ããããã€ã³ãè»éæšå®ã®ã¹ããŒãã
ããŒã¿ãšãã¹ã
ãã¬ãŒããŒã®åŸ®èª¿æŽã§ã¯ãç©ºéæ³šæãšæ®å·®ãããã¯ã åçµãæéçæ³šæå±€ãšæ®å·®ãããã¯ã®ã¿ã圱é¿ãåããŸããã
ã¢ãã«ã¯10,000åã®å埩ã§èšç·Žããã ã¢ãã ã»Wãã§ åŠç¿ç 1e-4ã®ããã㊠ããããµã€ãº ãã¬ãŒãã³ã°ã¯ 16 åã® NVIDIA A16 GPU ã§å®æœãããŸããã
ãã®åé¡ã«å¯ŸããåŸæ¥ã®ã¢ãããŒãã§ã¯ãã©ãã°ããŒã¹ã®ç·šéãæäŸãããŠããªãã£ããããç ç©¶è 㯠Framer ã®èªåæçžŠã¢ãŒããæ§è£œåã®æšæºæ©èœãšæ¯èŒããããšãéžæããŸããã
çŸåšã®æ¡æ£ããŒã¹ã®ãããªçæã·ã¹ãã ã®ã«ããŽãªã§ãã¹ãããããã¬ãŒã ã¯ãŒã¯ã¯ã LDMVFI; ãã€ãããã¯ã¯ã©ãã¿ãŒãããã³ SVDKFIåŸæ¥ã®ãããªã·ã¹ãã ã§ã¯ãç«¶åãããã¬ãŒã ã¯ãŒã¯ã¯ AMT; ã©ã€ã; å³; ãããŠåè¿°ã®æ ç»ã
ãŠãŒã¶ãŒèª¿æ»ã«å ããŠã DAVIS ããã³ UCF101 ããŒã¿ã»ããã
宿§ãã¹ãã¯ãç ç©¶ããŒã ã®å®¢èгçãªèœåãšãŠãŒã¶ãŒèª¿æ»ã«ãã£ãŠã®ã¿è©äŸ¡ã§ããããããããã®è«æã§ã¯ãåŸæ¥ã® ãããã®ææšã¯ãçŸåšã®ææ¡ã«ã¯ã»ãšãã©é©ããŠããŸããã
ãPSNRãSSIMãLPIPS ãªã©ã® [åæ§æ] ã¡ããªãã¯ã¯ãå ã®ãããªãšãã¯ã»ã«ãæã£ãŠããªãä»ã®åŠ¥åœãªè£éçµæãããã«ãã£ã«ãããããè£éããããã¬ãŒã ã®åè³ªãæ£ç¢ºã«ææ¡ã§ããŸããã
ãFID ãªã©ã®çæã¡ããªãã¯ã¯ããçšåºŠã®æ¹åããããããŸãããæéçãªäžè²«æ§ãèæ ®ããããã¬ãŒã ãåå¥ã«è©äŸ¡ããããããŸã äžååã§ããã
ããã«ãããããããç ç©¶è ãã¡ã¯ããã€ãã®äžè¬çãªææšãçšããŠå®æ§ãã¹ãã宿œããŸããã

Framer ãšç«¶åã·ã¹ãã ãæ¯èŒããå®éçãªçµæã
èè ãã¯ãäžå©ãªç¶æ³ã«ãããããããFramer ã¯ãã¹ããããæ¹æ³ã®äžã§æé«ã® FVD ã¹ã³ã¢ãéæãããšææããŠããŸãã
以äžã¯ã宿§çãªæ¯èŒã®ããã®è«æã®ãµã³ãã«çµæã§ãã

以åã®ã¢ãããŒããšã®å®æ§çãªæ¯èŒãããè©³çŽ°ãªæ å ±ã«ã€ããŠã¯è«æãåç §ããŠãã ããããŸãããããªã®çµæã¯ https://www.youtube.com/watch?v=4MPGKgn7jRc ã§ã芧ããã ããŸãã
èè ãã¯æ¬¡ã®ããã«ã³ã¡ã³ãããŠããŸãã
ã[ç§ãã¡ã®]æ¹æ³ã¯ãæ¢åã®è£éæè¡ãšæ¯èŒããŠãã¯ããã«é®®æãªãã¯ã¹ãã£ãšèªç¶ãªåããçã¿åºããŸããåŸæ¥ã®æ¹æ³ã§ã¯ã³ã³ãã³ããæ£ç¢ºã«è£éã§ããªãããšãå€ããå ¥åãã¬ãŒã éã«å€§ããªéããããã·ããªãªã§ç¹ã«åªããããã©ãŒãã³ã¹ãçºæ®ããŸããã
ãLDMVFI ã SVDKFI ãªã©ã®ä»ã®æ¡æ£ããŒã¹ã®æ¹æ³ãšæ¯èŒããŠãFramer ã¯å°é£ãªã±ãŒã¹ã«å¯ŸããŠåªããé©å¿æ§ã瀺ããããåªããå¶åŸ¡ãæäŸããŸããã
ãŠãŒã¶ãŒèª¿æ»ã§ã¯ãç ç©¶è 㯠20 人ã®åå è ãéããããŸããŸãªæ¹æ³ã§ãã¹ãããçµæãã©ã³ãã ã«äžŠã¹ã 100 åã®ãããªãè©äŸ¡ããŸããããã®çµæãæãããªã¢ã«ããªè£œåãè©äŸ¡ãã 1000 ä»¶ã®è©äŸ¡ãåŸãããŸããã

ãŠãŒã¶ãŒèª¿æ»ã®çµæã
äžã®ã°ã©ããããããããã«ããŠãŒã¶ãŒã¯ Framer ã®çµæãå§åçã«å¥œã¿ãŸããã
ãã®ãããžã§ã¯ãã«ä»éããYouTube ãã㪠ã¢ãŒãã£ã³ã°ã挫ç»ã®äžé衚çŸãªã©ããã¬ãŒã ã®ãã®ä»ã®æœåšçãªçšéã®ããã€ããæŠèª¬ããŸããããããããã®ã³ã³ã»ããå šäœã®å§ãŸãã§ãã
ãŸãšãïŒ
AI ããŒã¹ã®ãããªçæã®ã¿ã¹ã¯ã«ãšã£ãŠããã®èª²é¡ãçŸåšã©ãã»ã©éèŠã§ãããã¯ãããã匷調ããŠããéããããšã¯ãããŸããããããŸã§ãã¢ããã¥ã¢ãšããã®äž¡æ¹ã®ã³ãã¥ããã£ã§ããã¬ãŒã éã®ãã¥ã€ãŒã³åŠçã« FILM ã (é AI) EbSynth ãªã©ã®å€ããœãªã¥ãŒã·ã§ã³ã䜿çšãããŠããŸãããããããã®ãœãªã¥ãŒã·ã§ã³ã«ã¯é¡èãªå¶éããããŸãã
æ°ãã T2V ãã¬ãŒã ã¯ãŒã¯ã®å ¬åŒãµã³ãã« ãããªãäžèª å®ã«ãã¥ã¬ãŒã·ã§ã³ãããŠãããããæ©æ¢°åŠç¿ã·ã¹ãã 㯠3D ã¢ãŒãã£ã³ã°å¯èœã¢ãã« (3DMM) ãªã©ã®ã¬ã€ãã³ã¹ ã¡ã«ããºã ã LoRA ãªã©ã®ãã®ä»ã®è£å©çãªã¢ãããŒãã«é ŒãããšãªããåããŠãããžãªã¡ããªãæ£ç¢ºã«æšæž¬ã§ãããšãã誀解ãåºãåºãŸã£ãŠããŸãã
æ£çŽã«èšããšããã¥ã€ãŒã³èªäœã¯ãããšãå®ç§ã«å®è¡ã§ãããšããŠãããã®åé¡ã«å¯Ÿãããããã¯ããŸãã¯ããŸããã«ãããŸããããšã¯ãããããã¹ã ããã³ãããçŸåšã®ããŸããŸãªä»£æ¿ææ®µã«ããã¬ã€ãã³ã¹ãå®è¡ãããããã2 ã€ã®é©åã«æŽåãããã¬ãŒã ç»åãäœæããæ¹ãç°¡åãªå Žåãå€ãããããã®å€ãæ¹æ³ã® AI ããŒã¹ã®ããŒãžã§ã³ãå埩çã«é²æ©ããŠããã®ã¯åã°ããããšã§ãã
åççºè¡æ¥ïŒ29幎2024æXNUMXæ¥ç«ææ¥