Connect with us


AI Used To Create Drug Molecule That Could Fight Fibrosis




Creating new medical drugs is a complex process that can take years of research and billions of dollars. Yet it’s also an important investment to make for people’s health. Artificial intelligence could potentially make the discovery of new drugs easier and substantially quicker if the recent work of the startup Insilico Medicine continues to make progress. As reported by SingularityHub, the AI startup has recently utilized AI to design a molecule that could combat fibrosis.

Given how complex and time-consuming the process of discovering new molecules for a drug is, scientists and engineers are constantly looking for ways to expedite it. The idea of using computers to help discover new drugs is nothing new, as the concept has existed for decades. However, progress on this front has been slow, with engineers struggling to find the right algorithms for drug creation.

Deep learning has started to make AI-driven drug discovery more viable, with pharmaceutical companies investing heavily in AI startups over the past few years. One company has managed to use AI to design a molecule that could combat fibrosis, taking only 46 days to do dream up a molecule resembling therapeutic drugs. Insilco Medicine combined two different deep learning techniques to achieve this result: reinforcement learning and generative adversarial networks (GANs).

Reinforcement learning is a machine learning method that encourages the machine learning model to make certain decisions by providing the network with feedback that elicits certain responses. The model can be punished for making undesirable choices or rewarded for making desirable choices. By using a combination of both negative and positive reinforcement the model is guided toward making desired decisions, and it will trend towards making decisions that minimize punishment and maximize reward.

Meanwhile, generative adversarial networks are “adversarial” because they consist of two different neural networks pitted against one another. The two networks are given examples of objects to train on, frequently images. The job of one network is to create a counterfeit object, something sufficiently similar to the real object that it can be confused for the genuine article. The job of the second network is to detect counterfeit objects. The two networks try to outperform the other network, and as they are both increasing their performance to overcome the other network, this virtual arms race leads to the counterfeit model generating objects that are nearly indistinguishable from the real thing.

By combining both GANS and reinforcement learning algorithms, the researchers were able to have their models produce new drug molecules extremely similar to already existing therapeutic drugs.

The results of Insilico Medicine’s experiments with AI drug discovery were recently published in the journal Nature Biotechnology. In the paper, the researchers discuss how the deep learning models were trained. The researchers took representations of molecules already used in drugs to handle proteins involved in idiopathic pulmonary fibrosis or IPF. These molecules were used as the basis for training and the combined models were able to generate around 30,000 possible drug molecules.

The researchers then sorted through the 30000 candidate molecules and selected the six most promising molecules for lab testing. These six finalists were synthesized in the lab and used in a series of tests that tracked their ability to target the IPF protein. One molecule, in particular, seemed promising, as it delivered the kind of results that are desired in a medical drug.

It’s important to note that the fibrosis drug targeted in the experiment has already been extensively researched, with multiple effective drugs already existing for it. The researchers could reference these drugs, and this gave the research team a leg up as they had a substantial amount of data to train their models on. This doesn’t hold true for many other diseases, and as a result, there is a larger gap to close on these treatments.

Another important fact is that the company’s current drug development model only deals with the initial discovery process,and that the molecules generated by their model will still require many tweaks and optimizations before the molecules could potentially be used for clinical trials.

According to Wired, Insilico Medicine’s CEO Alex Zharvornokov acknowledges that their AI-driven drug isn’t ready for field use, with the current study just being a proof of concept. The goal of this experiment was to see how quickly a drug could be designed with the assistance of AI systems. However, Zhavornokov notes that the researchers were able to design a potentially useful molecule much faster than they could have if they had used regular drug discovery methods.

Despite the caveats, Insilico Medicine’s research still represents a notable advancement in the usage of AI to create new drugs. The refinement of the techniques used in the study could substantially shorten the amount of time required to develop a new drug. This could prove especially useful in an era where antibiotic-resistant bacteria are proliferating and many previously effective drugs losing their potency.